Suppr超能文献

人红细胞带3蛋白对草酸盐转运的特性研究。

Characterization of oxalate transport by the human erythrocyte band 3 protein.

作者信息

Jennings M L, Adame M F

机构信息

Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77555, USA.

出版信息

J Gen Physiol. 1996 Jan;107(1):145-59. doi: 10.1085/jgp.107.1.145.

Abstract

This paper describes characteristics of the transport of oxalate across the human erythrocyte membrane. Treatment of cells with low concentrations of H2DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonate) inhibits Cl(-)-Cl- and oxalate-oxalate exchange to the same extent, suggesting that band 3 is the major transport pathway for oxalate. The kinetics of oxalate and Cl- self-exchange fluxes indicate that the two ions compete for a common transport site; the apparent Cl- affinity is two to three times higher than that of oxalate. The net exchange of oxalate for Cl-, in either direction, is accompanied by a flux of H+ with oxalate, as is also true of net Cl(-)-SO4(2-) exchange. The transport of oxalate, however, is much faster than that of SO4(2-) or other divalent anions. Oxalate influx into Cl(-)-containing cells has an extracellular pH optimum of approximately 5.5 at 0 degrees C. At extracellular pH below 5.5 (neutral intracellular pH), net Cl(-)-oxalate exchange is nearly as fast as Cl(-)-Cl- exchange. The rapid Cl(-)-oxalate exchange at acid extracellular pH is not likely to be a consequence of Cl- exchange for monovalent oxalate (HOOC-COO-; pKa = 4.2) because monocarboxylates of similar structure exchange for Cl- much more slowly than does oxalate. The activation energy of Cl(-)-oxalate exchange is about 35 kCal/mol at temperatures between 0 and 15 degrees C; the rapid oxalate influx is therefore not a consequence of a low activation energy. The protein phosphatase inhibitor okadaic acid has no detectable effect on oxalate self-exchange, in contrast to a recent finding in another laboratory (Baggio, B., L. Bordin, G. Clari, G. Gambaro, and V. Moret. 1993. Biochim. Biophys. Acta. 1148:157-160.); our data provide no evidence for physiological regulation of anion exchange in red cells.

摘要

本文描述了草酸盐跨人红细胞膜转运的特征。用低浓度的H2DIDS(4,4'-二异硫氰基芪-2,2'-二磺酸盐)处理细胞,对Cl(-)-Cl-和草酸盐-草酸盐交换的抑制程度相同,这表明带3蛋白是草酸盐的主要转运途径。草酸盐和Cl-自交换通量的动力学表明,这两种离子竞争一个共同的转运位点;Cl-的表观亲和力比草酸盐高两到三倍。草酸盐与Cl-的净交换,无论方向如何,都伴随着H+与草酸盐的通量,净Cl(-)-SO4(2-)交换也是如此。然而,草酸盐的转运比SO4(2-)或其他二价阴离子快得多。在0℃时,草酸盐流入含Cl(-)的细胞,细胞外pH的最适值约为5.5。在细胞外pH低于5.5(细胞内pH为中性)时,净Cl(-)-草酸盐交换几乎与Cl(-)-Cl-交换一样快。在酸性细胞外pH下快速的Cl(-)-草酸盐交换不太可能是Cl-与一价草酸盐(HOOC-COO-;pKa = 4.2)交换的结果,因为结构相似的单羧酸盐与Cl-的交换比草酸盐慢得多。在0至15℃之间的温度下,Cl(-)-草酸盐交换的活化能约为35千卡/摩尔;因此,草酸盐的快速流入不是低活化能的结果。与另一个实验室最近的发现(Baggio, B., L. Bordin, G. Clari, G. Gambaro, and V. Moret. 1993. Biochim. Biophys. Acta. 1148:157-160.)相反,蛋白磷酸酶抑制剂冈田酸对草酸盐自交换没有可检测到的影响;我们的数据没有提供红细胞中阴离子交换生理调节的证据。

相似文献

1
Characterization of oxalate transport by the human erythrocyte band 3 protein.
J Gen Physiol. 1996 Jan;107(1):145-59. doi: 10.1085/jgp.107.1.145.
3
Pathways for oxalate transport in rabbit renal microvillus membrane vesicles.
J Biol Chem. 1996 Jun 28;271(26):15491-7. doi: 10.1074/jbc.271.26.15491.
4
Polarized distribution of oxalate transport systems in LLC-PK1 cells, a line of renal epithelial cells.
Am J Physiol. 1994 Feb;266(2 Pt 2):F266-74. doi: 10.1152/ajprenal.1994.266.2.F266.
6
Characteristics of rat downregulated in adenoma (rDRA) expressed in HEK 293 cells.
Pflugers Arch. 2007 Jun;454(3):441-50. doi: 10.1007/s00424-007-0213-7. Epub 2007 Feb 16.
8
9
Anion exchange pathways for Cl- transport in rabbit renal microvillus membranes.
Am J Physiol. 1987 Sep;253(3 Pt 2):F513-21. doi: 10.1152/ajprenal.1987.253.3.F513.

引用本文的文献

1
Oxalate homeostasis.
Nat Rev Nephrol. 2023 Feb;19(2):123-138. doi: 10.1038/s41581-022-00643-3. Epub 2022 Nov 3.
2
Cell physiology and molecular mechanism of anion transport by erythrocyte band 3/AE1.
Am J Physiol Cell Physiol. 2021 Dec 1;321(6):C1028-C1059. doi: 10.1152/ajpcell.00275.2021. Epub 2021 Oct 20.
3
Chronic metabolic acidosis reduces urinary oxalate excretion and promotes intestinal oxalate secretion in the rat.
Urolithiasis. 2015 Nov;43(6):489-99. doi: 10.1007/s00240-015-0801-5. Epub 2015 Jul 11.
4
Regulators of Slc4 bicarbonate transporter activity.
Front Physiol. 2015 Jun 12;6:166. doi: 10.3389/fphys.2015.00166. eCollection 2015.
6
Transport of H2S and HS(-) across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl(-)/HS(-) exchange.
Am J Physiol Cell Physiol. 2013 Nov 1;305(9):C941-50. doi: 10.1152/ajpcell.00178.2013. Epub 2013 Jul 17.
7
The trigger-maintenance model of persistent mild to moderate hyperoxaluria induces oxalate accumulation in non-renal tissues.
Urolithiasis. 2013 Nov;41(6):455-66. doi: 10.1007/s00240-013-0584-5. Epub 2013 Jul 3.
8
The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters.
Physiol Rev. 2013 Apr;93(2):803-959. doi: 10.1152/physrev.00023.2012.
9
Substitution of transmembrane domain Cys residues alters pH(o)-sensitive anion transport by AE2/SLC4A2 anion exchanger.
Pflugers Arch. 2013 Jun;465(6):839-51. doi: 10.1007/s00424-012-1196-6. Epub 2012 Dec 28.

本文引用的文献

2
Functional activation of plasma membrane anion exchangers occurs in a pre-Golgi compartment.
J Cell Biol. 1993 Apr;121(1):37-48. doi: 10.1083/jcb.121.1.37.
7
Exchange of HCO3- for monovalent anions across the human erythrocyte membrane.
J Membr Biol. 1980;52(2):173-9. doi: 10.1007/BF01869123.
8
Monocarboxylate transport in erythrocytes.
J Membr Biol. 1982;70(2):89-103. doi: 10.1007/BF01870219.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验