Suppr超能文献

培养的海马神经元轴突与树突中的细胞器运动和代谢

Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons.

作者信息

Overly C C, Rieff H I, Hollenbeck P J

机构信息

Department of Neurobiology, Harvard Medical School, Boston MA 02115, USA.

出版信息

J Cell Sci. 1996 May;109 ( Pt 5):971-80. doi: 10.1242/jcs.109.5.971.

Abstract

Regional regulation of organelle transport seems likely to play an important role in establishing and maintaining distinct axonal and dendritic domains in neurons, and in managing differences in local metabolic demands. In addition, known differences in microtubule polarity and organization between axons and dendrites along with the directional selectivity of microtubule-based motor proteins suggest that patterns of organelle transport may differ in these two process types. To test this hypothesis, we compared the patterns of movement of different organelle classes in axons and different dendritic regions of cultured embryonic rat hippocampal neurons. We first examined the net direction of organelle transport in axons, proximal dendrites and distal dendrites by video-enhanced phase-contrast microscopy. We found significant regional variation in the net transport of large phase-dense vesicular organelles: they exhibited net retrograde transport in axons and distal dendrites, whereas they moved equally in both directions in proximal dendrites. No significant regional variation was found in the net transport of mitochondria or macropinosomes. Analysis of individual organelle motility revealed three additional differences in organelle transport between the two process types. First, in addition to the difference in net transport direction, the large phase-dense organelles exhibited more persistent changes in direction in proximal dendrites where microtubule polarity is mixed than in axons where microtubule polarity is uniform. Second, while the net direction of mitochondrial transport was similar in both processes, twice as many mitochondria were motile in axons than in dendrites. Third, the mean excursion length of moving mitochondria was significantly longer in axons than in dendrites. To determine whether there were regional differences in metabolic activity that might account for these motility differences, we labeled mitochondria with the vital dye, JC-1, which reveals differences in mitochondrial transmembrane potential. Staining of neurons with this dye revealed a greater proportion of highly charged, more metabolically active, mitochondria in dendrites than in axons. Together, our data reveal differences in organelle motility and metabolic properties in axons and dendrites of cultured hippocampal neurons.

摘要

细胞器运输的区域调节似乎在建立和维持神经元中不同的轴突和树突区域以及管理局部代谢需求差异方面发挥着重要作用。此外,轴突和树突之间已知的微管极性和组织差异,以及基于微管的运动蛋白的方向选择性表明,细胞器运输模式在这两种过程类型中可能有所不同。为了验证这一假设,我们比较了培养的胚胎大鼠海马神经元轴突和不同树突区域中不同细胞器类别的运动模式。我们首先通过视频增强相差显微镜检查了轴突、近端树突和远端树突中细胞器运输的净方向。我们发现大的相致密囊泡细胞器的净运输存在显著的区域差异:它们在轴突和远端树突中表现出净逆行运输,而在近端树突中它们向两个方向的移动是相等的。线粒体或大胞饮体的净运输未发现显著的区域差异。对单个细胞器运动性的分析揭示了这两种过程类型之间细胞器运输的另外三个差异。首先,除了净运输方向的差异外,大的相致密细胞器在微管极性混合的近端树突中比在微管极性均匀的轴突中表现出更持久的方向变化。其次,虽然线粒体运输的净方向在这两个过程中相似,但轴突中可运动的线粒体数量是树突中的两倍。第三,轴突中移动线粒体的平均偏移长度明显长于树突。为了确定是否存在可能解释这些运动性差异的代谢活性区域差异,我们用活性染料JC-1标记线粒体,该染料可揭示线粒体跨膜电位的差异。用这种染料对神经元进行染色后发现,树突中高电荷、代谢活性更高的线粒体比例高于轴突。总之,我们的数据揭示了培养的海马神经元轴突和树突中细胞器运动性和代谢特性的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验