Suppr超能文献

血管诱导型一氧化氮合酶基因治疗:对鸟苷三磷酸环化水解酶I的需求

Vascular inducible nitric oxide synthase gene therapy: requirement for guanosine triphosphate cyclohydrolase I.

作者信息

Tzeng E, Yoneyama T, Hatakeyama K, Shears L L, Billiar T R

机构信息

Department of Surgery, University of Pittsburgh, Pa 15261, USA.

出版信息

Surgery. 1996 Aug;120(2):315-21. doi: 10.1016/s0039-6060(96)80304-7.

Abstract

BACKGROUND

Human inducible nitric oxide synthase (iNOS) gene transfer inhibits myointimal hyperplasia in vitro. However, unstimulated vascular smooth muscle cells (SMC) do not synthesize tetrahydrobiopterin (BH4), an essential cofactor for iNOS, which may be an obstacle to successful vascular iNOS gene therapy. We investigated the capacity of gene transfer of guanosine triphosphate (GTP) cyclohydrolase I (GTPCH), the rate-limiting enzyme for BH4 biosynthesis, to supply cofactor for iNOS activity.

METHODS

A human GTPCH expression plasmid (pCIS-GTPCH) was transfected into rat aortic SMC (RAOSMC) and BH4-deficient NIH3T3 cells engineered to stably express human iNOS (3T3-iNOS). GTPCH activity and intracellular biopterins were assessed as a measure of successful transfection, and the capacity of GTPCH to reconstitute iNOS activity was used to determine whether BH4 was made available to the iNOS protein.

RESULTS

The pCIS-GTPCH-transfected 3T3 cells had demonstrable GTPCH activity as compared with control cells (169.3 +/- 6.6 pmol/hr/mg versus 0, p < 0.001). Intracellular biopterin levels were also increased in transfected 3T3 and SMC (60.6 +/- 2.6 and 101.7 +/- 28.3 pmol/mg, respectively, versus less than 4 in control cells). GTPCH reconstituted near-maximal iNOS activity in 3T3-iNOS cells despite a gene transfer efficiency of less than 1%. GTPCH and iNOS enzymes did not have to coexist in the same cell for the synthesized BH4 to support iNOS activity.

CONCLUSION

GTPCH gene transfer reconstitutes iNOS activity in BH4-deficient cells despite poor transfer efficiency. GTPCH can deliver a cofactor to targeted cells even if it is synthesized in neighboring cells, and may be a means to concurrently deliver BH4 with iNOS in vivo.

摘要

背景

人诱导型一氧化氮合酶(iNOS)基因转移在体外可抑制肌内膜增生。然而,未受刺激的血管平滑肌细胞(SMC)不合成四氢生物蝶呤(BH4),而BH4是iNOS的一种必需辅因子,这可能是血管iNOS基因治疗成功的一个障碍。我们研究了鸟苷三磷酸(GTP)环水解酶I(GTPCH)(BH4生物合成的限速酶)的基因转移能力,以供应iNOS活性所需的辅因子。

方法

将人GTPCH表达质粒(pCIS-GTPCH)转染至大鼠主动脉平滑肌细胞(RAOSMC)和经基因工程改造以稳定表达人iNOS的BH4缺陷型NIH3T3细胞(3T3-iNOS)。评估GTPCH活性和细胞内生物蝶呤以衡量转染是否成功,并利用GTPCH重构iNOS活性的能力来确定BH4是否可被iNOS蛋白利用。

结果

与对照细胞相比,pCIS-GTPCH转染的3T3细胞具有可证实的GTPCH活性(169.3±6.6 pmol/小时/毫克对0,p<0.001)。转染的3T3细胞和SMC中的细胞内生物蝶呤水平也有所升高(分别为60.6±2.6和101.7±28.3 pmol/毫克,而对照细胞中低于4 pmol/毫克)。尽管基因转移效率低于1%,GTPCH仍在3T3-iNOS细胞中重构了接近最大的iNOS活性。合成的BH4要支持iNOS活性,GTPCH和iNOS酶不必共存于同一细胞中。

结论

尽管转移效率低,GTPCH基因转移仍能在BH4缺陷细胞中重构iNOS活性。即使GTPCH在邻近细胞中合成,它也能将辅因子递送至靶细胞,并且可能是在体内同时将BH4与iNOS一起递送的一种手段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验