Heinz D W, Ryan M, Smith M P, Weaver L H, Keana J F, Griffith O H
Institut für Organische Chemie und Biochemie, Universität Freiburg, Germany.
Biochemistry. 1996 Jul 23;35(29):9496-504. doi: 10.1021/bi9606105.
Numerous proteins on the external surface of the plasma membrane are anchored by glycosylated derivatives of phosphatidylinositol (GPI), rather than by hydrophobic amino acids embedded in the phospholipid bilayer. These GPI anchors are cleaved by phosphatidylinositol-specific phospholipases C (PI-PLCs) to release a water-soluble protein with an exposed glycosylinositol moiety and diacylglycerol, which remains in the membrane. We have previously determined the crystal structure of Bacillus cereus PI-PLC, the enzyme which is widely used to release GPI-anchored proteins from membranes, as free enzyme and also in complex with myo-inositol [Heinz, D.W., Ryan, M. Bullock, T.L., & Griffith, O. H. (1995) EMBO J. 14, 3855-3863]. Here we report the refined 2.2 A crystal structure of this enzyme complexed with a segment of the core of all GPI anchors, glucosaminyl(alpha 1-->6)-D-myo-inositol [GlcN-(alpha 1-->6)Ins ]. The myo-inositol moiety of GlcN(alpha 1-->6)Ins is well-defined and occupies essentially the same position in the active site as does free myo-inositol, which provides convincing evidence that the enzyme utilizes the same catalytic mechanism for cleavage of PI and GPI anchors. The myo-inositol moiety makes several specific hydrogen bonding interactions with active site residues. In contrast, the glucosamine moiety lies exposed to solvent at the entrance of the active site with minimal specific protein contacts. The glucosamine moiety is also less well-defined, suggesting enhanced conformational flexibility. On the basis of the positioning of GlcN(alpha 1-->6)Ins in the active site, it is predicted that the remainder of the GPI-glycan makes little or no specific interactions with B. cereus PI-PLC. This explains why B. cereus PI-PLC can cleave GPI anchors having variable glycan structures.
质膜外表面的许多蛋白质是通过磷脂酰肌醇(GPI)的糖基化衍生物锚定的,而不是通过嵌入磷脂双分子层的疏水氨基酸锚定。这些GPI锚被磷脂酰肌醇特异性磷脂酶C(PI-PLCs)切割,以释放出一种带有暴露的糖基肌醇部分的水溶性蛋白质和仍留在膜中的二酰基甘油。我们之前已经确定了蜡样芽孢杆菌PI-PLC的晶体结构,该酶被广泛用于从膜上释放GPI锚定蛋白,包括游离酶形式以及与肌醇形成的复合物的晶体结构[海因茨,D.W.,瑞安,M.布洛克,T.L.,&格里菲思,O.H.(1995年)《欧洲分子生物学组织杂志》14卷,3855 - 3863页]。在此,我们报告该酶与所有GPI锚核心片段葡糖胺基(α1→6)-D-肌醇[GlcN-(α1→6)Ins]形成复合物的2.2埃分辨率的精制晶体结构。GlcN(α1→6)Ins的肌醇部分定义明确,在活性位点占据的位置与游离肌醇基本相同,这提供了令人信服的证据,表明该酶对PI和GPI锚的切割利用相同的催化机制。肌醇部分与活性位点残基形成了几个特定的氢键相互作用。相比之下,葡糖胺部分暴露于活性位点入口处的溶剂中,与蛋白质的特异性接触极少。葡糖胺部分的定义也不太明确,表明其构象灵活性增强。基于GlcN(α1→6)Ins在活性位点的定位,预计GPI聚糖的其余部分与蜡样芽孢杆菌PI-PLC几乎没有或没有特异性相互作用。这就解释了为什么蜡样芽孢杆菌PI-PLC能够切割具有可变聚糖结构的GPI锚。