Suppr超能文献

Characterization of the endothelium-specific murine vascular endothelial growth factor receptor-2 (Flk-1) promoter.

作者信息

Rönicke V, Risau W, Breier G

机构信息

Max-Planck-Institut für Physiologische und Klinische Forschung, Bad Nauheim, Germany.

出版信息

Circ Res. 1996 Aug;79(2):277-85. doi: 10.1161/01.res.79.2.277.

Abstract

Flk-1, a high-affinity signaling receptor for vascular endothelial growth factor (VEGF), is strongly and specifically expressed on endothelial cells during embryonic development of the vascular system and during tumor angiogenesis. Disruption of Flk-1 gene function has recently been shown to prevent completely endothelial cell differentiation during murine embryonic development. To gain insights into the mechanisms that regulate the endothelium-specific Flk-1 expression, we have isolated the 5'-flanking region of the murine Flk-1 gene. RNase protection and primer extension analyses revealed a single transcriptional start site located 299 bp upstream from the translational start site in an initiator-like pyrimidine-rich sequence. The 5'-flanking region is rich in GC residues and lacks a typical TATA or CAAT box. A luciferase reporter construct containing a fragment from nucleotides -1900 to +299 showed strong endothelium-specific activity in transfected bovine aortic endothelial cells. Deletion analyses revealed that endothelium-specific Flk-1 expression is stimulated by the 5'-untranslated region of the first exon, which contains an activating element between nucleotides +137 and +299. In addition, two endothelium-specific negative regulatory elements were identified between nucleotides -4100 and -623. Two strong general activating elements were present in the region between nucleotides -96 and -37, which contains one potential NF kappa B and three potential AP-2 binding sites. This study shows that Flk-1 expression in endothelial cells is mainly regulated by an endothelium-specific activating element in the long 5'-untranslated region of the first exon and by negative regulatory elements located further upstream.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验