Cespuglio R, Burlet S, Marinesco S, Robert F, Jouvet M
Département de médecine expérimentale, INSERM U. 52, Lyon, France.
C R Acad Sci III. 1996 Mar;319(3):191-200.
Nitric oxide (NO) is synthesized in the neurons by constitutive NO synthase (NOS). Within given neuronal sets, this enzyme is colocalized with different other neurotransmitters such as, for example, GABA, acethylcholine or serotonin. Our attention has been focused on the fact that serotoninergic neurons, well known for their involvement in sleep triggering and maintenance, synthesize also NO. In order to evaluate the modalities of release of this compound throughout the rat sleep-waking cycle, we prepared a sensor allowing its specific detection in freely moving animals. The active part of this sensor is a carbon fiber (phi = 30 microns) successively coated with porphyrin nickel and nafion. In vitro, together with differential normal pulse voltammetric measurements, it allows the detection of a 650 mV signal varying linearly in NO solutions ranging from 5.10(-7) to 10(-4) M. At physiological concentrations, L-arginine, L-citrulline, nitrites and nitrates do not yield a signal at 650 mV. Similarly, the compounds administered to the animals, hydroxylamine, L-arginine p-nitroanilide (L-ANA) and L-N omega-nitro arginine methyl ester (L-NAME) are not electroactive at 650 mV. L-ANA and L-NAME, also appear to be trapping agents for NO while leaving the electrochemical properties of the sensor untouched. In vivo, in the frontal cortex of the anesthetized rat, a signal is measured at 650 mV. The administration of hydroxylamine (40 mg/kg, i.p.) induces a 100% increase in its height. The administration of L-ANA (100 mg/kg, i.p.) produces its complete disappearance within 50 min. Finally, the administration of L-NAME (100 mg/kg, i.p.) is without effect. This last aspect might be dependent upon the inability of L-NAME to cross the blood brain barrier. On the contrary, the increase in the signal height obtained with hydroxylamine and its disappearance with L-ANA support that it might depend upon NO. In vivo, and in animals also equipped with polygraphic electrodes, the signal measured in the same area of the cortex exhibits the highest height during the waking state and decreases during either slow-wave sleep (-6%) or paradoxical sleep (-9%). These mild variations might represent the mean of several NO sources (cortical GABAergic interneurons, cholinergic and serotoninergic axonal nerve endings), each of them varying differently throughout the sleep-waking cycle.
一氧化氮(NO)由组成型一氧化氮合酶(NOS)在神经元中合成。在特定的神经元群体中,这种酶与其他不同的神经递质共定位,例如γ-氨基丁酸(GABA)、乙酰胆碱或血清素。我们的注意力集中在这样一个事实上,即血清素能神经元,因其在睡眠触发和维持中的作用而广为人知,也能合成NO。为了评估这种化合物在大鼠睡眠-觉醒周期中的释放方式,我们制备了一种传感器,可在自由活动的动物中对其进行特异性检测。该传感器的活性部分是一根碳纤维(直径 = 30微米),依次涂有卟啉镍和钠米离子交换膜。在体外,结合差分正常脉冲伏安测量,它可以检测到在5×10⁻⁷至10⁻⁴ M的NO溶液中线性变化的650 mV信号。在生理浓度下,L-精氨酸、L-瓜氨酸、亚硝酸盐和硝酸盐在650 mV处不会产生信号。同样,给动物施用的化合物,羟胺、L-精氨酸对硝基苯胺(L-ANA)和L-Nω-硝基精氨酸甲酯(L-NAME)在650 mV处也没有电活性。L-ANA和L-NAME似乎也是NO的捕获剂,同时不影响传感器的电化学性质。在体内,在麻醉大鼠的额叶皮质中,可在650 mV处测量到一个信号。施用羟胺(40 mg/kg,腹腔注射)会使其高度增加100%。施用L-ANA(100 mg/kg,腹腔注射)会使其在50分钟内完全消失。最后,施用L-NAME(100 mg/kg,腹腔注射)没有效果。最后这一点可能取决于L-NAME无法穿过血脑屏障。相反,羟胺导致的信号高度增加以及L-ANA导致的信号消失表明它可能与NO有关。在体内,对于也配备有多导记录电极的动物,在皮质同一区域测量到的信号在清醒状态下高度最高,在慢波睡眠期间(降低6%)或异相睡眠期间(降低9%)降低。这些轻微变化可能代表了几种NO来源(皮质GABA能中间神经元、胆碱能和血清素能轴突神经末梢)的平均值,它们在睡眠-觉醒周期中的变化各不相同。