Suppr超能文献

NO2-induced expression of specific protein kinase C isoforms and generation of phosphatidylcholine-derived diacylglycerol in cultured pulmonary artery endothelial cells.

作者信息

Li Y D, Patel J M, Block E R

机构信息

Division of Pulmonary Medicine, University of Florida College of Medicine, Gainesville, 32608-1197, USA.

出版信息

FEBS Lett. 1996 Jul 1;389(2):131-5. doi: 10.1016/0014-5793(96)00550-9.

Abstract

The present study examines whether nitrogen dioxide (NO2)-induced activation of protein kinase C (PKC) is associated with increased expression of specific PKC isoforms and/or with enhanced generation of phosphatidylcholine(PC)-derived diacylglycerol (DAG) in pulmonary artery endothelial cells (PAEC). Western blot analysis revealed that exposure to 5 ppm NO2 resulted in increased expression of PKC alpha and epsilon isoforms in both cytosol and membrane fractions in a time-dependent fashion compared with controls. A time-dependent elevated expression of PKC isoform beta was observed in the cytosol fraction only of N02-exposed cells. PKC isoform gamma was not detectable in either the cytosolic or membrane fractions from control or N02-exposed cells. Scatchard analysis of [3h]phorbol 12,13-dibutyrate (PDBu) binding showed that exposure to N02 for 24 h increased the maximal number of binding sites (Bmax) from 15.2 +/- 2.3 pmol/mg (control) to 42.3 +/- 5.3 pmol/mg (p < 0.01, n = 4) (NO2-exposed). Exposure to NO2 significantly increased PC specific-phospholipase C and phospholipase D activities in the plasma membrane of PAEC (p < 0.05 and p < 0.001, respectively). When [3H]-myristic acid-labeled cells were exposed to NO2, significantly increased radioactivity was associated with cellular DAG. These results show for the first time that exposure of PAEC to NO2 results in elevated expression of specific PKC isoforms and in enhanced generation of cellular DAG, and the latter appears to arise largely from the hydrolysis of plasma membrane PC.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验