Suppr超能文献

Glycogen depletion of the intrafusal fibers in a mouse muscle spindle during prolonged swimming.

作者信息

Yoshimura A, Shimomura Y, Murakami T, Ichikawa M, Nakai N, Fujitsuka C, Kanematsu M, Fujitsuka N

机构信息

Department of Bioscience, Nagoya Institute of Technology, Japan.

出版信息

Am J Physiol. 1996 Aug;271(2 Pt 2):R398-408. doi: 10.1152/ajpregu.1996.271.2.R398.

Abstract

This study investigated the recruitment of different types of intrafusal fibers during prolonged swimming at 60-75% of VO2max. We used 56 male adult mice and examined depletion of glycogen in soleus (Sol) and extensor digitorum longus (EDL) muscle spindles by visual inspection and a newly developed optical scanning method. More than 80% of all spindles from six mice consisted of four fibers: one type I nuclear bag (bag1) fiber, one type II nuclear bag (bag2) fiber, and two nuclear chain fibers. Glycogen content was estimated in muscle fibers from groups of six mice that had rested or swum for either 0.5, 1, 2, 4, or 8 h. The optical scanning intensity of periodic acid Schiff (PAS)-stained sections was correlated with their biochemically determined glycogen content (r = 0.93). Both methods showed fundamentally the same result: each type of intrafusal fiber has its own typical recruitment pattern during exercise. In the initial phase (0-0.5 h), glycogen depletion was largest in nuclear bag1 fibers and insignificant in the bag2 and chain fibers. With the bag1 fibers having become fatigued, nuclear bag2 fibers mainly took over during the middle phase (2-4 h). During the last phase (4-8 h), only the glycogen content of chain fibers decreased significantly (4-8 h). There were significant correlations between the recruitment pattern of bag1 and extrafusal type I fibers in both Sol and EDL, between nuclear bag2 and type IIa fibers in Sol, and between nuclear chain and type IIb fibers in EDL. This suggests that, during moderately intense exercise, glycogen depletion occurs first in the slow, then the intermediate, and, finally, the fast intrafusal fibers.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验