Suppr超能文献

一种用于定位多个数量性状基因座的通用蒙特卡罗方法。

A general Monte Carlo method for mapping multiple quantitative trait loci.

作者信息

Jansen R C

机构信息

Centre for Plant Breeding and Reproduction Research, Wageningen, The Netherlands.

出版信息

Genetics. 1996 Jan;142(1):305-11. doi: 10.1093/genetics/142.1.305.

Abstract

In this paper we address the mapping of multiple quantitative trait loci (QTLs) in line crosses for which the genetic data are highly incomplete. Such complicated situations occur, for instance, when dominant markers are used or when unequally informative markers are used in experiments with outbred populations. We describe a general and flexible Monte Carlo expectation-maximization (Monte Carlo EM) algorithm for fitting multiple-QTL models to such data. Implementation of this algorithm is straightforward in standard statistical software, but computation may take much time. The method may be generalized to cope with more complex models for animal and human pedigrees. A practical example is presented, where a three-QTL model is adopted in an outbreeding situation with dominant markers. The example is concerned with the linkage between randomly amplified polymorphic DNA (RAPD) markers and QTLs for partial resistance to Fusarium oxysporum in lily.

摘要

在本文中,我们探讨了在遗传数据高度不完整的品系杂交中多个数量性状基因座(QTL)的定位问题。例如,当使用显性标记或在远交群体实验中使用信息不等的标记时,就会出现这种复杂情况。我们描述了一种通用且灵活的蒙特卡罗期望最大化(Monte Carlo EM)算法,用于将多QTL模型拟合到此类数据。该算法在标准统计软件中的实现很简单,但计算可能需要大量时间。该方法可以推广以处理更复杂的动物和人类家系模型。文中给出了一个实际例子,即在有显性标记的远交情况下采用三QTL模型。该例子涉及随机扩增多态性DNA(RAPD)标记与百合对尖孢镰刀菌部分抗性的QTL之间的连锁关系。

相似文献

引用本文的文献

3

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验