Suppr超能文献

Secretion of a variant of human single-chain urokinase-type plasminogen activator without an N-glycosylation site in the methylotrophic yeast, Pichia pastoris and characterization of the secreted product.

作者信息

Tsujikawa M, Okabayashi K, Morita M, Tanabe T

机构信息

Green Cross Corporation, Osaka, Japan.

出版信息

Yeast. 1996 May;12(6):541-53. doi: 10.1002/(SICI)1097-0061(199605)12:6%3C541::AID-YEA935%3E3.0.CO;2-A.

Abstract

Human single-chain urokinase-type plasminogen activator without an N-glycosylation site (scu-PA-Q302) was produced in the methylotrophic yeast, Pichia pastoris using the shortened prepeptide sequence of a fungal aspartic proteinase, Mucor pusillus rennin (MPR). The level of urokinase-type plasminogen activator (u-PA) immunoreactive material in YPM medium was 0.47 mg/l; however, most of the secreted product had been processed to smaller polypeptides. The N-terminal amino acid sequence of major species was identical to that of the low molecular weight two-chain u-PA. Some approaches to minimizing the proteolysis of scu-PA-Q302 were attempted. Addition of Triton X-100, L-arginine and ammonium phosphate to the YPM medium minimized the proteolysis of scu-PA-Q302 and increased the yield of immunoreactive material to approximately 5 mg/l. Use of proteinase A- or proteinase B-deficient strains of yeast did not reduce the degradation. Co-expression of scu-PA-Q302 and urinary trypsin inhibitor resulted in partial reduction of the major species of proteolysis. Scu-PA-Q302 was purified from the culture supernatant of the improved medium by two successive chromatographies on Phenyl-Sepharose and S-Sepharose. The purified protein had a molecular weight of 47 kDa. It did not contain detectable N-linked oligosaccharides, but contained O-linked oligosaccharides attached to the light chain. N-terminal amino acid sequencing of the purified preparation showed that the shortened prepeptide sequence of MPR was correctly processed by the Pichia yeast. Scu-PA-Q302 closely resembles natural scu-PA with respect to its enzymatic activity against the chromogenic substrate S-2444 and its in vitro fibrinolytic properties.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验