Suppr超能文献

通过抑制酵母氨基酸转运蛋白靶向突变体鉴定出盐胁迫诱导的脯氨酸转运蛋白和盐胁迫抑制的广谱氨基酸通透酶。

Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant.

作者信息

Rentsch D, Hirner B, Schmelzer E, Frommer W B

机构信息

Institut für Genbiologische Forschung, Berlin, Germany.

出版信息

Plant Cell. 1996 Aug;8(8):1437-46. doi: 10.1105/tpc.8.8.1437.

Abstract

A yeast mutant lacking SHR3, a protein specifically required for correct targeting of plasma membrane amino acid permeases, was used to study the targeting of plant transporters and as a tool to isolate new SHR3-independent amino acid transporters. For this purpose, an shr3 mutant was transformed with an Arabidopsis cDNA library. Thirty-four clones were capable of growth under selective conditions, but none showed homology with SHR3. However, genes encoding eight different amino acid transporters belonging to three different transporter families were isolated. Five of these are members of the general amino acid permease (AAP) gene family, one is a member of the NTR family, encoding an oligopeptide transporter, and two belong to a new class of transporter genes. A functional analysis of the latter two genes revealed that they encode specific proline transporters (ProT) that are distantly related to the AAP gene family. ProT1 was found to be expressed in all organs, but highest levels were found in roots, stems, and flowers. Expression in flowers was highest in the floral stalk phloem that enters the carpels and was downregulated after fertilization, indicating a specific role in supplying the ovules with proline. ProT2 transcripts were found ubiquitously throughout the plant, but expression was strongly induced under water or salt stress, implying that ProT2 plays an important role in nitrogen distribution during water stress, unlike members of the AAP gene family whose expression was repressed under the same conditions. These results corroborate the general finding that under water stress, amino acid export is impaired whereas proline export is increased.

摘要

一个缺乏SHR3的酵母突变体被用于研究植物转运蛋白的靶向定位,并作为分离新的不依赖SHR3的氨基酸转运蛋白的工具。SHR3是质膜氨基酸通透酶正确靶向定位所特需的一种蛋白质。为此,用拟南芥cDNA文库转化一个shr3突变体。34个克隆在选择性条件下能够生长,但没有一个与SHR3具有同源性。然而,分离出了编码属于三个不同转运蛋白家族的八种不同氨基酸转运蛋白的基因。其中五个是通用氨基酸通透酶(AAP)基因家族的成员,一个是NTR家族的成员,编码一种寡肽转运蛋白,另外两个属于一类新的转运蛋白基因。对后两个基因的功能分析表明,它们编码与AAP基因家族关系较远的特定脯氨酸转运蛋白(ProT)。发现ProT1在所有器官中都有表达,但在根、茎和花中表达水平最高。在进入心皮的花柄韧皮部中花中的表达最高,受精后下调,表明在为胚珠提供脯氨酸方面具有特定作用。在整个植物中普遍发现ProT2转录本,但在水分或盐胁迫下表达强烈诱导,这意味着ProT2在水分胁迫期间的氮分配中起重要作用,这与AAP基因家族成员在相同条件下表达受到抑制不同。这些结果证实了一般发现,即在水分胁迫下,氨基酸输出受损而脯氨酸输出增加。

相似文献

2
拟南芥中氨基酸转运蛋白(AAPs)的底物特异性和表达谱
J Biol Chem. 1995 Jul 7;270(27):16315-20. doi: 10.1074/jbc.270.27.16315.
3
从拟南芥中编码一种广谱特异性氨基酸通透酶的cDNA在酵母中的表达克隆。
Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5944-8. doi: 10.1073/pnas.90.13.5944.
5
香叶万寿菊脯氨酸代谢相关基因的分离与表达分析。
Gene. 2014 Mar 10;537(2):203-13. doi: 10.1016/j.gene.2014.01.002. Epub 2014 Jan 13.
6
拟南芥中两种具有不同底物特异性的相关氨基酸转运蛋白的差异表达。
Plant J. 1993 Dec;4(6):993-1002. doi: 10.1046/j.1365-313x.1993.04060993.x.
7
构巢曲霉SHR3直系同源物的产物具有有限的氨基酸转运蛋白靶标范围。
Fungal Genet Biol. 2006 Apr;43(4):222-33. doi: 10.1016/j.fgb.2005.11.006. Epub 2006 Mar 13.
8
一种与硝酸盐和肽转运蛋白相关的拟南芥组氨酸转运蛋白的克隆
FEBS Lett. 1994 Jun 27;347(2-3):185-9. doi: 10.1016/0014-5793(94)00533-8.
10
拟南芥中γ-氨基丁酸、脯氨酸和季铵化合物转运蛋白的鉴定与特性分析
FEBS Lett. 1999 May 7;450(3):280-4. doi: 10.1016/s0014-5793(99)00516-5.

引用本文的文献

1
缺乏多种氨基酸转运蛋白的酿酒酵母菌株的表征及全基因组测序:研究氨基酸转运的工具
PLoS One. 2025 Apr 30;20(4):e0315789. doi: 10.1371/journal.pone.0315789. eCollection 2025.
2
脯氨酸标记在植物耐逆性中的作用
Int J Genomics. 2025 Apr 2;2025:9348557. doi: 10.1155/ijog/9348557. eCollection 2025.
3
藜麦中AAT基因家族的全基因组鉴定及其在非生物胁迫下的表达模式分析。
BMC Genomics. 2025 Mar 25;26(1):298. doi: 10.1186/s12864-025-11491-3.
4
氨基酸通透酶通过介导支链氨基酸转运促进番茄生长和耐盐性。
Hortic Res. 2024 Oct 11;12(1):uhae286. doi: 10.1093/hr/uhae286. eCollection 2025 Jan.
5
脯氨酸与活性氧:植物发育和应激反应中的统一机制?
Plants (Basel). 2024 Dec 24;14(1):2. doi: 10.3390/plants14010002.
6
海岸松砧木基因型调节嫁接茎中与胁迫耐受性相关的基因表达。
Plants (Basel). 2024 Jun 14;13(12):1644. doi: 10.3390/plants13121644.
7
通过转录组分析和共表达网络分析揭示小麦在早期生长阶段对盐胁迫的响应。
BMC Genom Data. 2024 Apr 12;25(1):36. doi: 10.1186/s12863-024-01221-1.
8
不再隐蔽:在水分亏缺下理解根系生长的进展和挑战。
Plant Cell. 2024 May 1;36(5):1377-1409. doi: 10.1093/plcell/koae055.

本文引用的文献

1
通过产生渗透调节剂甘露醇来保护转基因烟草免受压力。
Science. 1993 Jan 22;259(5094):508-10. doi: 10.1126/science.259.5094.508.
2
萌芽期氢氰酸对猕猴桃芽氨基酸谱的影响。
Plant Physiol. 1991 Nov;97(3):1256-9. doi: 10.1104/pp.97.3.1256.
3
发芽大麦籽粒盾片对脯氨酸的吸收
Plant Physiol. 1986 Apr;80(4):902-7. doi: 10.1104/pp.80.4.902.
4
脯氨酸在水分胁迫下大麦叶片中的积累与运转和氮素平衡的关系。
Plant Physiol. 1979 Mar;63(3):518-23. doi: 10.1104/pp.63.3.518.
7
欧芹叶片中真菌侵染尝试部位周围基因表达的时空模式。
Plant Cell. 1989 Oct;1(10):993-1001. doi: 10.1105/tpc.1.10.993.
8
对环境压力的适应性
Plant Cell. 1995 Jul;7(7):1099-1111. doi: 10.1105/tpc.7.7.1099.
10
发育中大豆子叶原生质体中γ-氨基丁酸分流途径的亚细胞区室化
Plant Physiol. 1995 May;108(1):99-103. doi: 10.1104/pp.108.1.99.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验