Suppr超能文献

多分支微血管网络中复杂振荡的理论分析。

Theoretical analysis of complex oscillations in multibranched microvascular networks.

作者信息

Ursino M, Cavalcanti S, Bertuglia S, Colantuoni A

机构信息

Department of Electronics, University of Bologna, Italy.

出版信息

Microvasc Res. 1996 Mar;51(2):229-49. doi: 10.1006/mvre.1996.0023.

Abstract

A mathematical model was used to study the origin of complex self-sustained diameter oscillations in multibranched microvascular networks. The model includes three branching levels (order 3, 2, and 1 arterioles) of a microvascular network derived from in vivo observation in the hamster dorsal cutaneous muscle. The main biomechanical aspects covered by the model are (1) the dependence of the elastic and active wall stress on the inner radius and (2) the static and dynamic myogenic response. Simulations on isolated arterioles indicate that self-sustained periodic diameter oscillations may occur at constant transmural pressure. Conversely, simulations on the entire network reveal different oscillatory patterns, including periodic, quasiperiodic, and chaotic fluctuations. Chaos in the model is revealed by the presence of a broad noise-like component in the frequency spectrum and by the sensitivity dependence of model results on small perturbations. Our results suggest that, owing to the intrinsic nonlinearity of the system, a contracting mechanism, such as the myogenic response, may induce different oscillatory patterns. The change from periodic to chaotic oscillations may be a consequence of a modest variation in a parameter (systemic pressure or arterial resistance) not necessarily related to pathophysiological conditions. Accordingly, our in vivo observations in the skeletal muscle showed that in some instances arteriolar vasomotion is converted from regular to highly irregular patterns in basal conditions. Vasomotion is found to affect mean blood flow compared with the nonoscillatory steady state. Chaotic oscillations tend to maintain a constant ratio of blood flows entering into bifurcation vessels, whereas periodic vasomotion determines a different flow distribution at branches.

摘要

采用数学模型研究多分支微血管网络中复杂的自持直径振荡的起源。该模型包括从仓鼠背部皮肤肌肉的体内观察得出的微血管网络的三个分支水平(3级、2级和1级小动脉)。该模型涵盖的主要生物力学方面包括:(1)弹性壁应力和主动壁应力对内半径的依赖性;(2)静态和动态肌源性反应。对孤立小动脉的模拟表明,在恒定跨壁压力下可能会出现自持周期性直径振荡。相反,对整个网络的模拟揭示了不同的振荡模式,包括周期性、准周期性和混沌波动。模型中的混沌通过频谱中存在广泛的类似噪声成分以及模型结果对小扰动的敏感依赖性得以揭示。我们的结果表明,由于系统的内在非线性,诸如肌源性反应之类的收缩机制可能会诱发不同的振荡模式。从周期性振荡到混沌振荡的变化可能是一个参数(全身压力或动脉阻力)适度变化的结果,而这不一定与病理生理状况相关。因此,我们在骨骼肌中的体内观察表明,在某些情况下,小动脉血管运动在基础状态下会从规则模式转变为高度不规则模式。与非振荡稳态相比,发现血管运动会影响平均血流量。混沌振荡倾向于维持进入分支血管的血流量的恒定比例,而周期性血管运动则决定了分支处不同的血流分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验