Suppr超能文献

Mechanoenergetics of negative inotropism of ventricular wall vibration in dog heart.

作者信息

Nishioka T, Goto Y, Hata K, Takasago T, Saeki A, Taylor T W, Suga H

机构信息

Department of Cardiovascular Dynamics, National Cardiovascular Center Research Institute, Osaka, Japan.

出版信息

Am J Physiol. 1996 Feb;270(2 Pt 2):H583-93. doi: 10.1152/ajpheart.1996.270.2.H583.

Abstract

Mechanical vibration depresses cardiac contractility. We studied the mechanoenergetic effects of this negative inotropism in the left ventricle (LV) of an isolated, cross-circulated dog heart preparation. We took full advantage of the mechanoenergetic relationship among the LV end-systolic elastance (Emax, contractility index), systolic pressure-volume area (PVA), and myocardial oxygen consumption (VO2). PVA is a measure of the total mechanical energy that cardiac contraction generates. PVA correlates closely with VO2. The VO2 intercept of the VO2-PVA relation reflects the VO2 component for excitation-contraction (E-C) coupling plus basal metabolism (PVA-independent VO2). VO2 above the PVA-independent VO2 reflects the VO2 component for mechanical contraction (PVA-dependent VO2). When we applied 70-Hz vibration of 2-mm amplitude to a LV wall region, it instantly decreased Emax and PVA by 20%, followed by a 10% decrease in VO2 at a fixed volume. However, the vibration neither lowered the VO2-PVA relation obtained at different LV volumes, unlike ordinary negative inotropism, nor changed its slope (1.88 +/- 0.23 vs. 1.86 +/- 0.23 x 10(-5) ml O2.mmHg-1.ml-1). The virtually zero delta PVA-independent VO2/delta Emax with vibration indicates a much smaller O2 cost of Emax than that seen with calcium and propranolol inotropism. These mechanoenergetics support the hypothesis that mechanical vibration primarily suppresses cardiac contractility without suppressing E-C coupling.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验