Survay M A, Goodall D M, Wren S A, Rowe R C
Department of Chemistry, University of York, UK.
J Chromatogr A. 1996 Aug 9;741(1):99-113. doi: 10.1016/0021-9673(96)00151-3.
A theoretical analysis of deviations from ideality in ionic transport is presented to correct mobilities, mu, measured in free solution capillary electrophoresis (CE) to mobility at infinite dilution, mu degree (limiting mobility). Non-ideality is treated at the same level of approximation as in equilibrium, using a correction factor for the sum of the analyte and counter-ion radius originally suggested by Robinson and Stokes (Electrolyte Solutions, 1961). Unlike previous corrections using Debye-Hückel-Onsager theory, which are strictly applicable only at very low ionic strengths, this treatment is expected to be valid for univalent ions migrating in a uni-univalent background electrolyte for ionic strengths up to 0.075 mol kg-1, a range typical of CE experiments. The analysis is applied to the determination of mu degree in acidic and basic buffers for oligoalanines and oligoglycines with degree of polymerisation 2 to 6. Limiting mobilities for the fully protonated and deprotonated peptides are found to be numerically equal but opposite in sign, consistent with a change in charge from +1 to -1. In all uni-univalent buffers studied (borate, citrate, low pH lithium phosphate and sodium phosphate) mu degree values established using data over a range of pH and ionic strength are found to be identical and in excellent agreement with previous values from isotachophoresis. Values of mu degree in high pH sodium phosphate buffer are systematically 0.2.10(-8) m2 V-1 s-1 higher than those in other buffers; this may be attributed to limitations of the model for a buffer with 1+:2- and 1+:3- ions. This self-consistent framework for standardising mobilities in free solution CE is expected to be widely applicable to univalent analytes migrating in a 1:1 background electrolyte.
本文对离子迁移中偏离理想状态的情况进行了理论分析,目的是将在自由溶液毛细管电泳(CE)中测得的迁移率μ校正为无限稀释时的迁移率μ°(极限迁移率)。采用了罗宾逊和斯托克斯(《电解质溶液》,1961年)最初提出的分析物和抗衡离子半径之和的校正因子,以与平衡状态下相同的近似水平处理非理想状态。与之前使用德拜 - 休克尔 - 昂萨格理论的校正方法不同,后者仅在极低离子强度下严格适用,而这种处理方法预计对于单价离子在单价 - 单价背景电解质中迁移、离子强度高达0.075 mol kg-1(CE实验的典型范围)时是有效的。该分析方法应用于测定聚合度为2至6的寡聚丙氨酸和寡聚甘氨酸在酸性和碱性缓冲液中的μ°。发现完全质子化和去质子化肽的极限迁移率在数值上相等但符号相反,这与电荷从 +1变为 -1一致。在所有研究的单价 - 单价缓冲液(硼酸盐、柠檬酸盐、低pH磷酸锂和磷酸钠)中,利用一系列pH和离子强度的数据确定的μ°值相同,并且与之前等速电泳得到的值非常吻合。在高pH磷酸钠缓冲液中的μ°值比其他缓冲液中的系统地高0.2×10-8 m2 V-1 s-1;这可能归因于具有1+:2-和1+:3-离子的缓冲液模型的局限性。这种用于在自由溶液CE中标准化迁移率的自洽框架预计将广泛适用于在1:1背景电解质中迁移的单价分析物。