Suppr超能文献

琼脂糖凝胶中的受阻扩散:有效介质模型的测试

Hindered diffusion in agarose gels: test of effective medium model.

作者信息

Johnson E M, Berk D A, Jain R K, Deen W M

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA.

出版信息

Biophys J. 1996 Feb;70(2):1017-23. doi: 10.1016/S0006-3495(96)79645-5.

Abstract

The diffusivities of uncharged macromolecules in gels (D) are typically lower than in free solution (D infinity), because of a combination of hydrodynamic and steric factors. To examine these factors, we measured D and D infinity for dilute solutions of several fluorescein-labeled macromolecules, using an image-based fluorescence recovery after photobleaching technique. Test macromolecules with Stokes-Einstein radii (rs) of 2.1-6.2 nm, including three globular proteins (bovine serum albumin, ovalbumin, lactalbumin) and four narrow fractions of Ficoll, were studied in agarose gels with agarose volume fractions (phi) of 0.038-0.073. The gels were characterized by measuring the hydraulic permeability of supported agarose membranes, allowing calculation of the Darcy permeability (kappa) for each gel sample. It was found that kappa, which is a measure of the intrinsic hydraulic conductance of the gel, decreased by an order of magnitude as phi was increased over the range indicated. The diffusivity ratio D/D infinity, which varied from 0.20 to 0.63, decreased with increases in rs or phi. Thus as expected, diffusional hindrances were the most severe for large macromolecules and/or relatively concentrated gels. According to a recently proposed theory for hindered diffusion through fibrous media, the diffusivity ratio is given by the product of a hydrodynamic factor (F) and a steric factor (S). The functional form is D/D infinity = F(rs/k1/2) S(f), where f = [(rs+rf)/rf]2 phi and rf is the fiber radius. Values of D/D infinity calculated from this effective medium theory, without use of adjustable parameters, were in much better agreement with the measured values than were predictions based on other approaches. The strengths and limitations of the effective medium theory for predicting diffusivities in gels are discussed.

摘要

由于流体动力学和空间位阻因素的共同作用,不带电荷的大分子在凝胶中的扩散系数(D)通常低于在自由溶液中的扩散系数(D∞)。为了研究这些因素,我们使用基于图像的光漂白后荧光恢复技术,测量了几种荧光素标记的大分子稀溶液的D和D∞。研究了斯托克斯-爱因斯坦半径(rs)为2.1 - 6.2 nm的测试大分子,包括三种球状蛋白质(牛血清白蛋白、卵清蛋白、乳白蛋白)和四个窄级分的聚蔗糖,它们在琼脂糖体积分数(phi)为0.038 - 0.073的琼脂糖凝胶中进行研究。通过测量支撑琼脂糖膜的水力渗透率来表征凝胶,从而计算每个凝胶样品的达西渗透率(kappa)。结果发现,kappa作为凝胶固有水力传导率的度量,在所示范围内随着phi的增加下降了一个数量级。扩散系数比D/D∞在0.20至0.63之间变化,随着rs或phi的增加而降低。因此,正如预期的那样,对于大分子和/或相对浓缩的凝胶,扩散阻碍最为严重。根据最近提出的关于通过纤维介质的受阻扩散理论,扩散系数比由流体动力学因子(F)和空间位阻因子(S)的乘积给出。函数形式为D/D∞ = F(rs/k1/2) S(f),其中f = [(rs + rf)/rf]2 phi,rf是纤维半径。由这种有效介质理论计算得到的D/D∞值,无需使用可调参数,与测量值的一致性比基于其他方法的预测要好得多。讨论了有效介质理论在预测凝胶中扩散系数方面的优势和局限性。

相似文献

1
Hindered diffusion in agarose gels: test of effective medium model.
Biophys J. 1996 Feb;70(2):1017-23. doi: 10.1016/S0006-3495(96)79645-5.
2
Diffusion and partitioning of proteins in charged agarose gels.
Biophys J. 1995 Apr;68(4):1561-8. doi: 10.1016/S0006-3495(95)80328-0.
3
Equilibrium partitioning of Ficoll in composite hydrogels.
J Colloid Interface Sci. 2004 Sep 15;277(2):404-9. doi: 10.1016/j.jcis.2004.04.063.
4
Hindered convection of macromolecules in hydrogels.
Biophys J. 2005 Jan;88(1):277-86. doi: 10.1529/biophysj.104.050302. Epub 2004 Oct 29.
5
Agarose-dextran gels as synthetic analogs of glomerular basement membrane: water permeability.
Biophys J. 2002 Apr;82(4):2081-9. doi: 10.1016/S0006-3495(02)75555-0.
6
Partitioning and diffusion of proteins and linear polymers in polyacrylamide gels.
Biophys J. 1996 Mar;70(3):1505-13. doi: 10.1016/S0006-3495(96)79712-6.
7
Effects of concentration on the partitioning of macromolecule mixtures in agarose gels.
J Colloid Interface Sci. 2004 Apr 15;272(2):288-97. doi: 10.1016/j.jcis.2003.10.008.
8
Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations.
Biophys J. 1999 Jul;77(1):542-52. doi: 10.1016/S0006-3495(99)76911-0.
9
Diffusivity of ions in agarose gels and intervertebral disc: effect of porosity.
Ann Biomed Eng. 2004 Dec;32(12):1710-7. doi: 10.1007/s10439-004-7823-4.
10
Tracer diffusion in F-actin and Ficoll mixtures. Toward a model for cytoplasm.
Biophys J. 1990 Jul;58(1):31-43. doi: 10.1016/S0006-3495(90)82351-1.

引用本文的文献

1
Precision design of dextran-permeated agarose hydrogels matching adipose stem cell adhesion timescales.
Mater Today Bio. 2025 May 6;32:101832. doi: 10.1016/j.mtbio.2025.101832. eCollection 2025 Jun.
2
High-throughput single cell -omics using semi-permeable capsules.
bioRxiv. 2025 Mar 17:2025.03.14.642805. doi: 10.1101/2025.03.14.642805.
3
Transient Gel Diffusiophoresis of a Spherical Colloidal Particle.
Micromachines (Basel). 2025 Feb 26;16(3):266. doi: 10.3390/mi16030266.
4
Electrochemical Diffusion Study in Poly(Ethylene Glycol) Dimethacrylate-Based Hydrogels.
Sensors (Basel). 2024 Jun 6;24(11):3678. doi: 10.3390/s24113678.
6
A microfluidic chip for sustained oxygen gradient formation in the intestine .
Lab Chip. 2024 Mar 26;24(7):1918-1929. doi: 10.1039/d3lc00793f.
7
Computational fluid dynamics modeling of aerosol particle transport through lung airway mucosa.
Comput Chem Eng. 2023 Nov;179. doi: 10.1016/j.compchemeng.2023.108458. Epub 2023 Oct 16.
8
Hydrogel drug delivery systems for minimally invasive local immunotherapy of cancer.
Adv Drug Deliv Rev. 2023 Nov;202:115083. doi: 10.1016/j.addr.2023.115083. Epub 2023 Sep 9.
9
Longitudinal diffusion barriers imposed by myofilaments and mitochondria in murine cardiac myocytes.
J Gen Physiol. 2023 Oct 2;155(10). doi: 10.1085/jgp.202213329. Epub 2023 Aug 9.

本文引用的文献

2
Antibody diffusion in human cervical mucus.
Biophys J. 1994 Feb;66(2 Pt 1):508-15. doi: 10.1016/s0006-3495(94)80802-1.
3
Diffusion and partitioning of proteins in charged agarose gels.
Biophys J. 1995 Apr;68(4):1561-8. doi: 10.1016/S0006-3495(95)80328-0.
4
Determination of the structure of agarose gels by gel chromatography.
Biochim Biophys Acta. 1967 Mar 22;136(2):199-205. doi: 10.1016/0304-4165(67)90064-5.
5
Optimization of size-exclusion separation of proteins on a Superose column.
J Chromatogr. 1989 Sep 22;479(1):159-64. doi: 10.1016/s0021-9673(01)83327-6.
7
Tracer diffusion in F-actin and Ficoll mixtures. Toward a model for cytoplasm.
Biophys J. 1990 Jul;58(1):31-43. doi: 10.1016/S0006-3495(90)82351-1.
8
Diffusion of proteins in Sepharose Cl-B gels.
J Chromatogr. 1992 Feb 7;591(1-2):115-20. doi: 10.1016/0021-9673(92)80228-m.
9
Determination of glomerular size-selectivity in the normal rat with Ficoll.
J Am Soc Nephrol. 1992 Aug;3(2):214-28. doi: 10.1681/ASN.V32214.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验