Lespessailles E, Jacquet G, Harba R, Jennane R, Loussot T, Viala J F, Benhamou C L
Department of Rheumatology, Orléans Hospital, France.
Rev Rhum Engl Ed. 1996 May;63(5):337-43.
The resistance of bone tissue is influenced not only by bone density parameters but also by bone architecture parameters, such as the microarchitecture and anisotropy of trabecular bone. We have developed and validated a fractal analysis method for studying bone microarchitecture on roentgenograms. This technique provides reproducible measurements of the fractal dimension (D) of bone, which reflects bone texture. The fractal dimension is determined in 36 different directions; the mean of these 36 values is representative of the image. A polar diagram gives the value of D according to the angle of analysis. By decomposing this diagram using polar Fourier Transform analysis, the parameters related to the shape of the polar diagram can be determined. This diagram image analysis technique has been used for other similar diagrams and applied to the results of our fractal analysis method. Diagram shape characterization may provide information on the angular distribution of results and therefore on the anisotropy of the images under study. The purpose of this study was to compare roentgenograms of the calcaneus and radius in the same subjects to determine whether texture and anisotropy parameters discriminated between these two bones. Roentgenograms of the calcaneus and radius were obtained in ten nonosteoporotic subjects. The radius had a smaller fractal dimension than the calcaneus (mean +/- standard deviation: 1.215 +/- 0.025 and 1.285 +/- 0.066, respectively; p = 0.014). Differences in the shape of the polar diagram were found between the two bones. The mean Fourier coefficient ratio C2/C4 was considerably smaller at the calcaneus (0.63 +/- 0.50) than at the radius (4.88 +/- 3.45; p = 0.005). Our method allows quantitative characterization of texture and anisotropy differences between the calcaneus and radius. The smaller fractal dimension of the radius probably reflects the simpler architecture of this non weight-bearing bone. The differences in polar diagram shape allow to evaluate anisotropy differences between the calcaneus and radius.
骨组织的阻力不仅受骨密度参数影响,还受骨结构参数影响,如松质骨的微观结构和各向异性。我们已开发并验证了一种用于在X线片上研究骨微观结构的分形分析方法。该技术可对反映骨纹理的骨分形维数(D)进行可重复测量。分形维数在36个不同方向上确定;这36个值的平均值代表该图像。极坐标图根据分析角度给出D值。通过使用极坐标傅里叶变换分析分解该图,可确定与极坐标图形状相关的参数。这种图图像分析技术已用于其他类似的图,并应用于我们的分形分析方法的结果。图形状表征可提供有关结果角度分布的信息,从而提供有关所研究图像各向异性的信息。本研究的目的是比较同一受试者跟骨和桡骨的X线片,以确定纹理和各向异性参数是否能区分这两块骨头。在10名非骨质疏松受试者中获取了跟骨和桡骨的X线片。桡骨的分形维数小于跟骨(平均值±标准差:分别为1.215±0.025和1.285±0.066;p = 0.014)。发现两块骨头的极坐标图形状存在差异。跟骨处的平均傅里叶系数比C2/C4(0.63±0.50)明显小于桡骨处(4.88±3.45;p = 0.005)。我们的方法允许对跟骨和桡骨之间的纹理和各向异性差异进行定量表征。桡骨较小的分形维数可能反映了这块非负重骨的结构更简单。极坐标图形状的差异有助于评估跟骨和桡骨之间的各向异性差异。