Podsiadlo P, Dahl L, Englund M, Lohmander L S, Stachowiak G W
Tribology Laboratory, School of Mechanical Engineering, University of Western Australia.
Osteoarthritis Cartilage. 2008 Mar;16(3):323-9. doi: 10.1016/j.joca.2007.07.010. Epub 2007 Sep 6.
To develop an accurate method for quantifying differences in the trabecular structure in the tibial bone between subjects with and without knee osteoarthritis (OA).
Standard knee radiographs were taken from 26 subjects (seven women) with meniscectomy and radiographic OA Kellgren & Lawrence grade 2 or worse in the medial compartment. Each case knee was individually matched by sex, age, body mass index and medial or lateral compartment with a control knee. A newly developed augmented Hurst orientation transform (HOT) method was used to calculate texture parameters for regions selected in X-ray images of non-OA and OA tibial bones. This method produces a mean value of fractal dimensions (FD MEAN), FDs in the vertical (FDV) and horizontal (FDH) directions and along a direction of the roughest part of the tibial bone (FDSta), fractal signatures and a texture aspect ratio (Str). The ratio determines a degree of the bone texture anisotropy. Reproducibility was calculated using an intraclass correlation coefficient (ICC). Comparisons between cases and controls were made with paired t tests. The performance of the HOT method was evaluated against a benchmark fractal signature analysis (FSA) method.
Compared with controls, trabecular bone in OA knees showed significantly lower FD MEAN, FDV, FDH and FDSta and higher Str at trabecular image sizes 0.2-1.1mm (P<0.05, HOT). The reproducibility of all parameters was very good (ICC>0.8). In the medial compartment, fractal signatures calculated for OA horizontal and vertical trabeculae were significantly lower at sizes 0.3-0.55 mm (P<0.05, HOT) and 0.3-0.65 mm (P<0.001, FSA). In the lateral compartment, FDs calculated for OA trabeculae were lower than controls (horizontal: 0.3-0.55 mm (P<0.05, HOT) and 0.3-0.65 mm (P<0.001, FSA); vertical: 0.3-0.4mm (P<0.05, HOT) and 0.3-0.35 mm (P<0.001, FSA).
The augmented HOT method produces fractal signatures that are comparable to those obtained from the benchmark FSA method. The HOT method provides a more detailed description of OA changes in bone anisotropy than the FSA method. This includes a degree of bone anisotropy measured using data from all possible directions and a texture roughness calculated for the roughest part of the bone. It appears that the augmented HOT method is well suited to quantify OA changes in the tibial bone structure.
开发一种准确的方法,用于量化患膝骨关节炎(OA)和未患膝骨关节炎的受试者胫骨小梁结构的差异。
对26名受试者(7名女性)进行标准膝关节X线摄影,这些受试者均接受过半月板切除术,且内侧间室的放射学OA Kellgren&Lawrence分级为2级或更严重。将每个病例膝关节按照性别、年龄、体重指数以及内侧或外侧间室与对照膝关节进行个体匹配。使用新开发的增强型赫斯特方向变换(HOT)方法,计算非OA和OA胫骨X线图像中选定区域的纹理参数。该方法可得出分形维数均值(FD MEAN)、垂直方向(FDV)和水平方向(FDH)以及沿胫骨最粗糙部分方向(FDSta)的分形维数、分形特征和纹理长宽比(Str)。该比值可确定骨纹理各向异性的程度。使用组内相关系数(ICC)计算再现性。采用配对t检验对病例组和对照组进行比较。针对基准分形特征分析(FSA)方法评估HOT方法的性能。
与对照组相比,在小梁图像尺寸为0.2 - 1.1mm时,OA膝关节的小梁骨FD MEAN、FDV、FDH和FDSta显著降低,Str升高(P<0.05,HOT)。所有参数的再现性都非常好(ICC>0.8)。在内侧间室,在尺寸为0.3 - 0.55mm(P<0.05,HOT)和0.3 - 0.65mm(P<0.001,FSA)时,OA水平和垂直小梁计算出的分形特征显著降低。在外侧间室,OA小梁计算出的分形维数低于对照组(水平:0.3 - 0.55mm(P<0.05,HOT)和0.3 - 0.65mm(P<0.001,FSA);垂直:0.3 - 0.4mm(P<0.05,HOT)和0.3 - 0.35mm(P<0.001,FSA)。
增强型HOT方法产生的分形特征与基准FSA方法获得的分形特征相当。与FSA方法相比,HOT方法能更详细地描述OA导致的骨各向异性变化。这包括使用来自所有可能方向的数据测量的骨各向异性程度以及为骨最粗糙部分计算的纹理粗糙度。增强型HOT方法似乎非常适合量化胫骨骨结构中的OA变化。