Suppr超能文献

基于部分循环神经网络的蛋白质二级结构预测

Protein secondary structure prediction with partially recurrent neural networks.

作者信息

Reczko M

机构信息

Department of Molecular Biophysics, German Cancer Research Center, Heidelberg, Germany.

出版信息

SAR QSAR Environ Res. 1993;1(2-3):153-9. doi: 10.1080/10629369308028826.

Abstract

Partially recurrent neural networks with different topologies are applied for secondary structure prediction of proteins. The state of some activations in the network is available after a pattern presentation via feedback connections as additional input during the processing of the next pattern in a sequence. A reference data set containing 91 proteins in the training set and 15 non-homologous proteins in the test set is used for training and testing a network with a modified, hierarchical Elman architecture. The network predicts the secondary structures alpha-helix, beta-sheet, and "coil" for each amino acid. The percentage of correctly classified amino acids is 67.83% on the training set and 63.98% on the test set. The best performance of a three-layer feedforward network is 62.7% on the same test set. A cascaded network, where the outputs of the recurrent network are processed by a second net with 13 x 3 inputs, four hidden and three output units has a predictive performance of 64.49%. The best corresponding feedforward net has a performance of 64.3%.

摘要

具有不同拓扑结构的部分递归神经网络被应用于蛋白质二级结构预测。在序列中下一个模式的处理过程中,通过反馈连接作为额外输入,在模式呈现后网络中某些激活状态是可用的。一个参考数据集,其中训练集包含91种蛋白质,测试集包含15种非同源蛋白质,用于训练和测试具有改进的分层埃尔曼架构的网络。该网络预测每个氨基酸的二级结构α-螺旋、β-折叠和“卷曲”。在训练集上正确分类的氨基酸百分比为67.83%,在测试集上为63.98%。在同一测试集上,三层前馈网络的最佳性能为62.7%。一个级联网络,其中递归网络的输出由具有13×3个输入、四个隐藏单元和三个输出单元的第二个网络进行处理,其预测性能为64.49%。最佳的相应前馈网络性能为64.3%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验