Calleja M C, Geladi P, Persoone G
Laboratory for Biological Research in Aquatic Pollution, University of Ghent, Belgium.
SAR QSAR Environ Res. 1994;2(3):193-234. doi: 10.1080/10629369408029903.
The linear and non-linear relationships of acute toxicity (as determined on five aquatic non-vertebrates and humans) to molecular structure have been investigated on 38 structurally-diverse chemicals. The compounds selected are the organic chemicals from the 50 priority chemicals prescribed by the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) programme. The models used for the evaluations are the best combination of physico-chemical properties that could be obtained so far for each organism, using the partial least squares projection to latent structures (PLS) regression method and backpropagated neural networks (BPN). Non-linear models, whether derived from PLS regression or backpropagated neural networks, appear to be better than linear models for describing the relationship between acute toxicity and molecular structure. BPN models, in turn, outperform non-linear models obtained from PLS regression. The predictive power of BPN models for the crustacean test species are better than the model for humans (based on human lethal concentration). The physico-chemical properties found to be important to predict both human acute toxicity and the toxicity to aquatic non-vertebrates are the n-octanol water partition coefficient (Pow) and heat of formation (HF). Aside from the two former properties, the contribution of parameters that reflect size and electronic properties of the molecule to the model is also high, but the type of physico-chemical properties differs from one model to another. In all of the best BPN models, some of the principal component analysis (PCA) scores of the 13C-NMR spectrum, with electron withdrawing/accepting capacity (LUMO, HOMO and IP) are molecular size/volume (VDW or MS1) parameters are relevant. The chemical deviating from the QSAR models include non-pesticides as well as some of the pesticides tested. The latter type of chemical fits in a number of the QSAR models. Outliers for one species may be different from those of other test organisms.
对38种结构各异的化学品研究了急性毒性(通过对五种水生无脊椎动物和人类进行测定)与分子结构之间的线性和非线性关系。所选化合物为多中心体外细胞毒性评估(MEIC)计划规定的50种优先化学品中的有机化学品。用于评估的模型是使用偏最小二乘投影到潜在结构(PLS)回归方法和反向传播神经网络(BPN),迄今为每种生物体获得的物理化学性质的最佳组合。无论是从PLS回归还是反向传播神经网络得出的非线性模型,在描述急性毒性与分子结构之间的关系方面似乎都优于线性模型。反过来,BPN模型的表现优于从PLS回归获得的非线性模型。BPN模型对甲壳类测试物种的预测能力优于对人类的模型(基于人类致死浓度)。发现对预测人类急性毒性和对水生无脊椎动物的毒性都很重要的物理化学性质是正辛醇水分配系数(Pow)和生成热(HF)。除了前两个性质外,反映分子大小和电子性质的参数对模型的贡献也很高,但不同模型的物理化学性质类型不同。在所有最佳的BPN模型中,13C-NMR光谱的一些主成分分析(PCA)得分、具有吸电子/接受能力(LUMO、HOMO和IP)以及分子大小/体积(VDW或MS1)参数都是相关的。偏离QSAR模型的化学品包括非农药以及一些测试的农药。后一种类型的化学品符合许多QSAR模型。一种物种的异常值可能与其他测试生物体的异常值不同。