Suppr超能文献

Cytoskeletal changes during neurogenesis in cultures of avain neural crest cells.

作者信息

Haendel M A, Bollinger K E, Baas P W

机构信息

Department of Anatomy, University of Wisconsin Medical School, Madison 53706, USA.

出版信息

J Neurocytol. 1996 Apr;25(4):289-301. doi: 10.1007/BF02284803.

Abstract

Neural crest cells are motile and mitotic, whereas their neuronal derivatives are terminally post-mitotic and consist of stationary cell body from which processes grow. The present study documents changes in the cytoskeleton that occur during neurogenesis in cultures of avain neural crest cells. The undifferentiated neural crest cells contain dense bundles of actin filaments throughout their cytoplasm, and a splayed array of microtubules attached to the centrosome. In newly differentiating neurons, the actin bundles are disrupted and most of the remaining actin filaments are reorganized into a cortical layer underlying the plasma membrane of the cell body and processes. Microtubules are more abundant in newly-differentiating neurons than in the undifferentiated cells, and individual microtubules can be seen dissociated from the centrosome. Neuron-specific beta-III tubulin appears in some crest cells prior to cessation of motility and cell division, and expression increases with total microtubule levels during neurogenesis. To investigate how these early cytoskeletal changes might contribute to alterations in morphology during neurogenesis, we have disrupted the cytoskeleton with pharmacologic agents. Microfilament disruption by cytochalasin immediately arrests the movement of neural crest cells and causes them to round-up, but does not significantly change the morphology of the immature neurons. Microtubule depolymerization by nocodazole slows the movement of undifferentiated cells and causes retraction of processes extended by the immature neurons. These results suggest that changes in the actin and microtubule arrays within neural crest cells govern distinct aspects of their morphogenesis into neurons.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验