Suppr超能文献

热解碳压痕试验的有限元分析

Finite element analysis of indentation tests on pyrolytic carbon.

作者信息

Gilpin C B, Haubold A D, Ely J L

机构信息

Department of Mechanical Engineering, California State University, Long Beach 90840, USA.

出版信息

J Heart Valve Dis. 1996 Jun;5 Suppl 1:S72-8.

PMID:8794040
Abstract

The stresses which cause failure at contact areas between leaflets and orifices in pyrolytic carbon heart valves are evaluated. These contact stresses have previously been studied using Hertzian crack models that apply to monolithic material. Many heart valves are not monolithic pyrolytic carbon but a pyrolytic carbon deposited on graphite. Contact loads on these layered structures cause initial cracking in the pyrolytic carbon at the interface between pyrolytic carbon and graphite rather than Hertzian surface cracks. Increasing the load on layered structures will cause a secondary cracking (of Hertzian cracks) on the surface. The contact loading was simulated with a 5.1 mm diameter ball pressing against a flat sample of graphite coated with 0.26 mm of pyrolytic carbon on each surface. Finite element analysis of this model calculated the stresses associated with a range of loads causing no cracks through initial interface cracks and secondary surface cracks to complete failure. The calculated stresses are correlated with parallel laboratory experiments. A failure criterion for contact stresses is developed. The initial cracks at the graphite/pyrolytic carbon interface occur when the tensile stress in the pyrolytic carbon reaches 207 to 276 MPa and the compression stress in the graphite reaches 414 to 483 MPa. These initial cracks do not propagate immediately to the surface since they run into a high triaxial compression stress field. Circular surface cracks occur at the edge of the ball/pyrolytic carbon contact area at higher loads. These cracks require a shear stress of about 241 MPa and also require a tensile stress component. The results provide a criterion for designing contact regions in pyrolytic heart valves.

摘要

对热解碳心脏瓣膜中叶瓣与孔口之间接触区域导致失效的应力进行了评估。此前曾使用适用于整体材料的赫兹裂纹模型来研究这些接触应力。许多心脏瓣膜并非整体热解碳,而是沉积在石墨上的热解碳。这些层状结构上的接触载荷会在热解碳与石墨之间的界面处的热解碳中引发初始裂纹,而非赫兹表面裂纹。增加层状结构上的载荷会导致表面出现二次裂纹(赫兹裂纹)。通过用直径5.1毫米的球压在每个表面涂覆有0.26毫米热解碳的石墨平板样品上来模拟接触载荷。对该模型进行有限元分析,计算了与一系列载荷相关的应力,这些载荷导致从初始界面裂纹到二次表面裂纹直至完全失效的不同情况。计算出的应力与平行的实验室实验结果相关。制定了接触应力的失效准则。当热解碳中的拉应力达到207至276兆帕且石墨中的压应力达到414至483兆帕时,在石墨/热解碳界面处会出现初始裂纹。这些初始裂纹不会立即扩展到表面,因为它们进入了一个高三轴压缩应力场。在较高载荷下,圆形表面裂纹出现在球/热解碳接触区域的边缘。这些裂纹需要约241兆帕的剪应力,并且还需要一个拉应力分量。研究结果为设计热解碳心脏瓣膜的接触区域提供了一个准则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验