Suppr超能文献

What structure and function of avian plasminogen activator and matrix metalloproteinase-2 reveal about their counterpart mammalian enzymes, their regulation and their role in tumor invasion.

作者信息

Alexander D S, Aimes R T, Quigley J P

机构信息

Department of Cellular and Molecular Pathology, SUNY at Stony Brook 11794-8691, USA.

出版信息

Enzyme Protein. 1996;49(1-3):38-58. doi: 10.1159/000468615.

Abstract

Rous sarcoma virus-transformed chick embryo fibroblasts (RSVCEF) constitute a well-characterized model system for oncogenic transformation, matrix degradation, and cancer invasion. As RSVCEF cultures employ both serine protease and metalloprotease cascades in the process of matrix degradation, they have contributed significantly to understanding the nature and regulation of these molecules involved in invasive cell behavior. RSVCEF produce elevated levels of a matrix metalloprotease-2 (MMP-2) whose hemopexin domain differs from mammalian MMP-2. The majority of MMP-2 produced by RSVCEF is present in a TIMP-free form which enhances its activation, catalytic activity and substrate specificity and therefore its matrix-degrading ability. RSVCEFs also exhibit high levels of urokinase-type plasminogen activator (uPA), which is found in active form in their conditioned medium in complete absence of plasminogen. Recombinantly expressed avian uPA is also in active form, while an active-site mutant of the same maintains its zymogen form, indicating the mechanism of activation of chicken uPA is autocatalytic. A domain and sequence comparison between chicken and human uPA attempts to identify motifs potentially responsible for the zymogen instability of avian uPA and its capability to autoactivate.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验