Vilalta I, Gliozzi A, Prats M
Université Paul Sabatier, Toulouse, France.
Eur J Biochem. 1996 Aug 15;240(1):181-5. doi: 10.1111/j.1432-1033.1996.0181h.x.
The stability, structural organization, and the ability to transfer protons long distances have been investigated in monolayers formed from archael bolaform lipids at the air/water interface. The lipids employed were the fractions GroR2Gro (R represents an acyl group with variable chain length typically consisting of 0-4 cyclopentane rings and 40 isoprenoid residues) and GroR2GroNon-Ol (Non-ol represents nonitol) extracted from Sulfolobus solfataricus by hydrolysis of the cytoplasmic membrane. GroR2-GroNon-ol films exhibit a very peculiar behaviour: the monolayer surface pressure increases with time, regardless of its low or high initial value. This finding is related to the possibility of GroR2GroNon-ol molecules to assume an upright (a metastable) or a U-shaped (stable) configuration. In the gaseous state and in the collapsed state of the film, no lateral proton conduction was observed. However, in the pressure range 0 < pi < 25 mN/m for GroR2Gro and 0 < pi < 30 mN/m for GroR2GroNon-ol monolayers, a lateral proton conduction at the air/water interface was observed. The structural organization of these bipolar lipids at the air/water interface can be related to the lateral proton conduction; it is possible to conclude that whatever configuration these lipids may adopt, they are able to structure the air/water interface in a hydrogen bond network that supports lateral proton conduction. This process may be ascribed to a percolation phenomenon occurring when the polar lipid head groups form a structured lattice of hydrogen bonds.