Suppr超能文献

Rostral optic tectum acquires caudal characteristics following ectopic engrailed expression.

作者信息

Logan C, Wizenmann A, Drescher U, Monschau B, Bonhoeffer F, Lumsden A

机构信息

Department of Developmental Neurobiology, UMDS, Guy's Hospital, London SE1 9RT, UK.

出版信息

Curr Biol. 1996 Aug 1;6(8):1006-14. doi: 10.1016/s0960-9822(02)00645-0.

Abstract

BACKGROUND

Expression of the homeobox-containing gene Engrailed (En) in an increasing rostral-to-caudal gradient in the dorsal mesencephalon is the earliest known marker for polarity of the chick optic tectum. In heterotopic transplantation experiments, En protein expression correlates well with the subsequent gradient of cytoarchitecture as well as the pattern of retinotectal projections. The En gradient also correlates with the expression of two putative retinal axon-guidance molecules, RAGS and ELF-1, which are Eph-like receptor tyrosine kinase ligands that may function in the establishment of retinotopic projections by excluding temporal axons from the caudal tectum.

RESULTS

To examine the function of En in determining tectal polarity, we used the replication-competent retroviral vector RCAS to misexpress mouse En-1 throughout the chick tectal primordium. Our results show that the rostral portion of the tectum adopts a caudal phenotype: the gradient of cytoarchitectonic differentiation is abolished, and the molecular markers RAGS and ELF-1 are strongly expressed rostrally. In addition, cell membranes from rostral tectum of RCAS En-1-infected embryos preferentially repel temporal axons in in vitro membrane stripe assays.

CONCLUSIONS

These results are consistent with a role for En in determining rostrocaudal polarity of the developing tectum. The demonstration that both RAGS and ELF-1 are upregulated following En misexpression provides a molecular basis for understanding the previous observation, also based on retrovirus-mediated En misexpression, that nasal axons form ectopic connections in rostral tectum, from which temporal axons are excluded.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验