Suppr超能文献

Evolution of anthocyanin biosynthesis in maize kernels: the role of regulatory and enzymatic loci.

作者信息

Hanson M A, Gaut B S, Stec A O, Fuerstenberg S I, Goodman M M, Coe E H, Doebley J F

机构信息

Department of Plant Biology, University of Minnesota, St. Paul 55108, USA.

出版信息

Genetics. 1996 Jul;143(3):1395-407. doi: 10.1093/genetics/143.3.1395.

Abstract

Understanding which genes contribute to evolutionary change and the nature of the alterations in them are fundamental challenges in evolution. We analyzed regulatory and enzymatic genes in the maize anthocyanin pathway as related to the evolution of anthocyanin-pigmented kernels in maize from colorless kernels of its progenitor, teosinte. Genetic tests indicate that teosinte possesses functional alleles at all enzymatic loci. At two regulatory loci, most teosintes possess alleles that encode functional proteins, but ones that are not expressed during kernel development and not capable of activating anthocyanin biosynthesis there. We investigated nucleotide polymorphism at one of the regulatory loci, cl. Several observations suggest that cl has not evolved in a strictly neutral manner, including an exceptionally low level of polymorphism and a biased representation of haplotypes in maize. Curiously, sequence data show that most of our teosinte samples possess a promoter element necessary for the activation of the anthocyanin pathway during kernel development, although genetic tests indicate that teosinte cl alleles are not active during kernel development. Our analyses suggest that the evolution of the purple kernels resulted from changes in cis regulatory elements at regulatory loci and not changes in either regulatory protein function nor the enzymatic loci.

摘要

相似文献

1
Evolution of anthocyanin biosynthesis in maize kernels: the role of regulatory and enzymatic loci.
Genetics. 1996 Jul;143(3):1395-407. doi: 10.1093/genetics/143.3.1395.
3
The genetics of maize evolution.
Annu Rev Genet. 2004;38:37-59. doi: 10.1146/annurev.genet.38.072902.092425.
5
Identification of the pr1 gene product completes the anthocyanin biosynthesis pathway of maize.
Genetics. 2011 May;188(1):69-79. doi: 10.1534/genetics.110.126136. Epub 2011 Mar 8.
6
The role of cis regulatory evolution in maize domestication.
PLoS Genet. 2014 Nov 6;10(11):e1004745. doi: 10.1371/journal.pgen.1004745. eCollection 2014 Nov.
7
Evidence of selection at the ramosa1 locus during maize domestication.
Mol Ecol. 2010 Apr;19(7):1296-311. doi: 10.1111/j.1365-294X.2010.04562.x. Epub 2010 Feb 24.
8
Molecular evolution of the Opaque-2 gene in Zea mays L.
J Mol Evol. 2005 Oct;61(4):551-8. doi: 10.1007/s00239-005-0003-9. Epub 2005 Aug 24.
9
Pl-Bh, an anthocyanin regulatory gene of maize that leads to variegated pigmentation.
Genetics. 1993 Oct;135(2):575-88. doi: 10.1093/genetics/135.2.575.

引用本文的文献

2
A population genomics appraisal suggests independent dispersals for bitter and sweet manioc in Brazilian Amazonia.
Evol Appl. 2019 Oct 19;13(2):342-361. doi: 10.1111/eva.12873. eCollection 2020 Feb.
3
Identifying loci with breeding potential across temperate and tropical adaptation via EigenGWAS and EnvGWAS.
Mol Ecol. 2019 Aug;28(15):3544-3560. doi: 10.1111/mec.15169. Epub 2019 Aug 18.
4
The Relationship Between Haplotype-Based and Haplotype Length.
Genetics. 2019 Sep;213(1):281-295. doi: 10.1534/genetics.119.302430. Epub 2019 Jul 8.
6
The Genetic Basis of Haploid Induction in Maize Identified with a Novel Genome-Wide Association Method.
Genetics. 2016 Apr;202(4):1267-76. doi: 10.1534/genetics.115.184234. Epub 2016 Feb 19.
7
Genome-scale transcriptome analysis of the alpine "glasshouse" plant Rheum nobile (Polygonaceae) with special translucent bracts.
PLoS One. 2014 Oct 24;9(10):e110712. doi: 10.1371/journal.pone.0110712. eCollection 2014.
8
Diversity and evolution of centromere repeats in the maize genome.
Chromosoma. 2015 Mar;124(1):57-65. doi: 10.1007/s00412-014-0483-8. Epub 2014 Sep 5.
9
Inferences from the historical distribution of wild and domesticated maize provide ecological and evolutionary insight.
PLoS One. 2012;7(11):e47659. doi: 10.1371/journal.pone.0047659. Epub 2012 Nov 14.

本文引用的文献

1
From teosinte to maize: the catastrophic sexual transmutation.
Science. 1983 Nov 25;222(4626):886-94. doi: 10.1126/science.222.4626.886.
2
Restriction site variation in the zea chloroplast genome.
Genetics. 1987 Sep;117(1):139-47. doi: 10.1093/genetics/117.1.139.
3
Molecular Analysis of viviparous-1: An Abscisic Acid-Insensitive Mutant of Maize.
Plant Cell. 1989 May;1(5):523-532. doi: 10.1105/tpc.1.5.523.
4
Genetics and Biochemistry of Anthocyanin Biosynthesis.
Plant Cell. 1995 Jul;7(7):1071-1083. doi: 10.1105/tpc.7.7.1071.
5
Molecular evolution of the Adh1 locus in the genus Zea.
Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5095-9. doi: 10.1073/pnas.90.11.5095.
6
Evolution of maize inferred from sequence diversity of an Adh2 gene segment from archaeological specimens.
Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1997-2001. doi: 10.1073/pnas.90.5.1997.
8
Pl-Bh, an anthocyanin regulatory gene of maize that leads to variegated pigmentation.
Genetics. 1993 Oct;135(2):575-88. doi: 10.1093/genetics/135.2.575.
9
Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila.
Genetics. 1995 Jan;139(1):299-308. doi: 10.1093/genetics/139.1.299.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验