Suppr超能文献

磷脂酰胆碱和磷脂酰乙醇胺的层状相和非层状相的水合特性。

Hydration properties of lamellar and non-lamellar phases of phosphatidylcholine and phosphatidylethanolamine.

作者信息

McIntosh T J

机构信息

Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.

出版信息

Chem Phys Lipids. 1996 Jul 15;81(2):117-31. doi: 10.1016/0009-3084(96)02577-7.

Abstract

Two of the most common phospholipids in biological membranes are phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Over a wide range of temperatures the PCs found in biological membranes form lamellar (bilayer) phases when dispersed in excess water, whereas PEs form either lamellar or hexagonal phases depending on their hydrocarbon chain composition. This paper details the hydration properties of lamellar and hexagonal phases formed by PCs and PEs, focusing on the energetics of hydration of these phases. For the hexagonal phase, the energy of bending the lipid monolayer is a critical term, with other contributions arising from the energies of hydrating the lipid headgroups and filling voids in the interstices in the hydrocarbon region. For the lamellar phase of PC, the water content is determined by a balance between the attractive van der Waals pressure and repulsive hydration and entropic (steric) pressures. In the case of PE bilayers, recent experiments demonstrate the presence of an additional strong, short-range attractive interaction, possibly due to hydrogen-bonded water interactions between N+ H3 groups in one bilayer and the PO4- groups in the apposing bilayer. This additional attractive pressure causes apposing PE bilayers to adhere strongly and to imbibe considerably less water than PC bilayers.

摘要

生物膜中两种最常见的磷脂是磷脂酰胆碱(PC)和磷脂酰乙醇胺(PE)。在很宽的温度范围内,生物膜中的PC分散在过量水中时会形成层状(双层)相,而PE则根据其烃链组成形成层状或六方相。本文详细阐述了由PC和PE形成的层状相和六方相的水合特性,重点关注这些相的水合能量学。对于六方相,脂质单层弯曲的能量是一个关键项,其他贡献来自脂质头部基团的水合能量以及填充烃区域间隙中的空隙。对于PC的层状相,水含量由吸引性的范德华压力与排斥性的水合压力和熵(空间)压力之间的平衡决定。在PE双层的情况下,最近的实验表明存在一种额外的强短程吸引相互作用,这可能是由于一个双层中的N + H3基团与相对双层中的PO4-基团之间的氢键水相互作用。这种额外的吸引压力导致相对的PE双层强烈粘附,并且比PC双层吸收的水少得多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验