Suppr超能文献

Inhibition of purified soluble guanylyl cyclase by copper ions.

作者信息

Schrammel A, Koesling D, Gorren A C, Chevion M, Schmidt K, Mayer B

机构信息

Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Austria.

出版信息

Biochem Pharmacol. 1996 Oct 11;52(7):1041-5. doi: 10.1016/0006-2952(96)00425-x.

Abstract

The aim of the present study was to investigate the effect of Cu(II) ions on soluble guanylyl cyclase [GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2; sGC] and to test for a possible physiological role of this putative cofactor of the enzyme [Gerzer et al., FEBS Lett. 132: 71-74, 1981]. CuSO4 was found to inhibit NO-stimulated 5GC with an IC50 of 2.2 +/- 0.3 microM. Virtually complete inhibition of guanosine-3',5'-cyclic monophosphate (cGMP) formation was observed at 10 microM of the copper salt. Presence of CuSO4 (2 microM) did not significantly affect the potency of 2,2-diethyl-1-nitroso-oxyhydrazine (DEA/NO) but did markedly decrease maximal cyclase activity from 3.71 +/- 0.2 mumol cGMP x mg-1 x min-1 to 1.75 +/- 0.2 mumol cGMP x mg-1 x min-1. The nonstimulated enzyme was also sensitive to CuSO4 (IC50 of 6.2 +/- 1.2 microM). Addition of glutathione, which potently complexes Cu(I) ions, induced a pronounced rightward shift of the concentration-response curves for inhibition by CuSO4 of both DEA/NO-stimulated and nonstimulated guanylyl cyclase. The inhibitory effect of CuSO4 was completely antagonized by the specific Cu(I) chelator neocuproine, with a half-maximal effect at 5.9 +/- 0.2 microM. In contrast, the Cu(II) chelator cuprizone and several thiols, which do not form stable Cu(I) complexes, were far less protective. Our results suggest that inhibition of soluble guanylyl cyclase by CuSO4 is unrelated to heme-mediated enzyme stimulation and may arise from the reversible high affinity binding of Cu(I) ions to a site of the protein that is critically involved in enzyme catalysis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验