Cartaud A, Ludosky M A, Haasemann M, Jung D, Campbell K, Cartaud J
Departement de Biologie Supramoléculaire et Cellulaire, Institut Jacques Monod, CNRS, Université, Paris 7, France.
J Cell Sci. 1996 Jul;109 ( Pt 7):1837-46. doi: 10.1242/jcs.109.7.1837.
Agrin, an extracellular matrix protein synthesized by nerves and muscles is known to promote the clustering of acetylcholine receptors and other synaptic proteins in cultured myotubes. This observation suggests that agrin may provide at least part of the signal for synaptic specialization in vivo. The extracellular matrix components agrin, laminin and merosin bind to alpha-dystroglycan, a heavily glycosylated peripheral protein part of the dystrophin-glycoprotein complex, previously characterized in the sarcolemma of skeletal and cardiac muscles and at the neuromuscular junction. In order to understand further the function of agrin and alpha DG in the genesis of the acetylcholine receptor-rich membrane domain, the settling of components of the dystrophin-glycoprotein complex and agrin was followed by immunofluorescence localization in developing Torpedo marmorata electrocytes. In 40-45 mm Torpedo embryos, a stage of development at which the electrocytes exhibit a definite structural polarity, dystrophin, alpha/beta-dystroglycan and agrin accumulated concomitantly with acetylcholine receptors at the ventral pole of the cells. Among these components, agrin appeared as the most intensely concentrated and sharply localized. The scarcity of the nerve-electrocyte synaptic contacts at this stage of development, monitored by antibodies against synaptic vesicles, further indicates that before innervation, the machinery for acetylcholine receptor clustering is provided by electrocyte-derived agrin rather than by neural agrin. These observations suggest a two-step process of acetylcholine receptor clustering involving: (i) an instructive role of electrocyte-derived agrin in the formation of a dystrophin-based membrane scaffold upon which acetylcholine receptor molecules would accumulate according to a diffusion trap model; and (ii) a maturation and/or stabilization step controlled by neural agrin. In the light of these data, the existence of more than one agrin receptor is postulated to account for the action of agrin variants at different stages of the differentiation of the postsynaptic membrane in Torpedo electrocytes.
聚集蛋白是一种由神经和肌肉合成的细胞外基质蛋白,已知它能促进培养的肌管中乙酰胆碱受体和其他突触蛋白的聚集。这一观察结果表明,聚集蛋白可能为体内突触特化提供至少部分信号。细胞外基质成分聚集蛋白、层粘连蛋白和merosin与α- dystroglycan结合,α- dystroglycan是肌营养不良蛋白-糖蛋白复合物中一种高度糖基化的外周蛋白部分,先前在骨骼肌和心肌的肌膜以及神经肌肉接头处有过描述。为了进一步了解聚集蛋白和α-DG在富含乙酰胆碱受体的膜结构域形成过程中的作用,通过免疫荧光定位追踪了发育中的电鳐电细胞中肌营养不良蛋白-糖蛋白复合物和聚集蛋白成分的沉降情况。在40-45毫米长的电鳐胚胎中,此时电细胞呈现出明确的结构极性,肌营养不良蛋白、α/β-dystroglycan和聚集蛋白与乙酰胆碱受体在细胞腹侧极同时积累。在这些成分中,聚集蛋白的浓度最高且定位最清晰。通过针对突触小泡的抗体监测到,在这个发育阶段神经-电细胞突触接触稀少,这进一步表明在神经支配之前,乙酰胆碱受体聚集机制是由电细胞衍生的聚集蛋白而非神经聚集蛋白提供的。这些观察结果提示了乙酰胆碱受体聚集的两步过程,包括:(i)电细胞衍生的聚集蛋白在基于肌营养不良蛋白的膜支架形成中起指导作用,乙酰胆碱受体分子将根据扩散陷阱模型在该支架上积累;(ii)由神经聚集蛋白控制的成熟和/或稳定步骤。根据这些数据,推测存在不止一种聚集蛋白受体来解释聚集蛋白变体在电鳐电细胞突触后膜分化不同阶段的作用。