Tang Y, Stephenson J L
Department of Physiology and Biophysics, Cornell University Medical College, New York, New York 10021, USA.
J Gen Physiol. 1996 Feb;107(2):207-30. doi: 10.1085/jgp.107.2.207.
Calcium (Ca) dynamics are incorporated into a mathematical model of the principal cell in the cortical collecting tubule developed earlier in Strieter et al. (1992a. Am. J Physiol. 263:F1063-1075). The Ca components are modeled after the Othmer-Tang model for IP(3)-sensitive calcium channels (1993, in Experimental and Theoretical Advances in Biological Pattern Formation, 295-319). There are IP(3)-sensitive Ca channels and ATP-driven pumps on the membrane of the endoplasmic reticulum. Calcium enters the cell passively down its electrochemical gradient. A Ca pump and Na/Ca exchange in the basolateral membrane are responsible for the extrusion of cytoplasmic calcium. Na/Ca exchange can also operate in reverse mode to transport Ca into the cell. Regulatory effects of cytoplasmic Ca on the apical Na channels are modeled after experimental data that indicate apical Na permeability varies inversely with cytoplasmic Ca concentration. Numerical results on changes in intracellular Ca caused by decreasing NaCl in the bath and the lumen are similar to those from experiments in Bourdeau and Lau (1990. Am. J Physiol. 258:F1497-1503). This match of simulation and experiment requires the synergistic action of the Na/Ca exchanger and the Ca regulated apical Na permeability. In a homogeneous medium, cytoplasmic Ca becomes oscillatory when extracellular Na is severely decreased, as observed in experiments of cultured principal cells (Koster, H., C. van Os and R. Bindels. 1993. Kidney Int.43:828-836). This essentially pathological situation arises because the hyperpolarization of membrane potential caused by Na-free medium increases Ca influx into the cell, while the Na/Ca exchanger is inactivated by the low extracellular Na and can no longer move Ca out of the cell effectively. The raising of the total amount of intracellular Ca induces oscillatory Ca movement between the cytoplasm and the endoplasmic reticulum. Ca homeostasis is investigated under the condition of severe extracellular Ca variations. As extracellular Ca is decreased, Ca regulation is greatly impaired if Ca does not regulate apical ionic transport. The simulations indicate that the Na/Ca exchanger alone has only limited regulatory capacity. The Ca regulated apical sodium or potassium permeability are essential for regulation of cytoplasmic Ca in the principal cell of the cortical collecting tubule.
钙(Ca)动力学被纳入到皮质集合管主细胞的数学模型中,该模型是由斯特里特等人(1992年a.《美国生理学杂志》263:F1063 - 1075)早期建立的。钙成分是根据奥思默 - 唐模型对IP(3)敏感钙通道进行建模的(1993年,载于《生物模式形成的实验与理论进展》,第295 - 319页)。内质网膜上存在IP(3)敏感钙通道和ATP驱动的泵。钙顺着其电化学梯度被动进入细胞。基底外侧膜上的钙泵和钠/钙交换负责胞质钙的排出。钠/钙交换也可以以反向模式运作将钙转运到细胞内。胞质钙对顶端钠通道的调节作用是根据实验数据建模的,这些数据表明顶端钠通透性与胞质钙浓度呈反比。关于浴液和管腔中氯化钠减少引起的细胞内钙变化的数值结果与布尔代约和刘(1990年.《美国生理学杂志》258:F1497 - 1503)实验中的结果相似。模拟结果与实验结果的这种匹配需要钠/钙交换器和钙调节的顶端钠通透性的协同作用。在均匀介质中,当细胞外钠严重减少时,胞质钙会发生振荡,这在培养的主细胞实验中也有观察到(科斯特,H.,C.范奥斯和R.宾德尔斯.1993年.《肾脏国际》43:828 - 836)。这种基本上属于病理状态的情况出现是因为无钠介质引起的膜电位超极化增加了钙进入细胞的量,而钠/钙交换器因细胞外低钠而失活,无法再有效地将钙运出细胞。细胞内钙总量的增加诱导了钙在胞质和内质网之间的振荡运动。在细胞外钙剧烈变化的条件下研究了钙稳态。随着细胞外钙减少,如果钙不调节顶端离子转运,钙调节会受到极大损害。模拟结果表明仅钠/钙交换器具有有限的调节能力。钙调节的顶端钠或钾通透性对于皮质集合管主细胞中胞质钙的调节至关重要。