Suppr超能文献

Contractile responses and structure of small bronchi isolated from rats after 20 months' exposure to ozone.

作者信息

Szarek J L, Stewart N L, Zhang J Z, Webb J A, Valentovic M A, Catalano P

机构信息

Department of Pharmacology, Marshall University School of Medicine, Huntington, West Virginia 25704-9388, USA.

出版信息

Fundam Appl Toxicol. 1995 Dec;28(2):199-208. doi: 10.1006/faat.1995.1160.

Abstract

Short-term exposure to high concentrations of ozone has been shown to increase airway responsiveness in normal humans and in all laboratory animal species studied to date. While our knowledge concerning the pulmonary effects of single exposures to ozone has increased rapidly over recent years, the effects of repeated exposures are less understood. The goal of the present study was to determine whether airway responsiveness is increased after near-lifetime exposure to ozone. Airway segments representing approximately eighth generation airways were isolated from Fischer 344 rats of both genders that had been exposed for 6 hr per day, 5 days per week for 20 months to 0, 0.12, 0.5, or 1.0 parts per million (ppm) ozone. Circumferential tension development was measured in isolated airways in response to bethanechol, acetylcholine, and electrical field stimulation. Responsiveness of the airways to the contractile stimuli was described by the effective dose or frequency that elicited half-maximum contraction (ED50) and the maximum response. Since ozone exposure is associated with remodeling of peripheral airways, smooth muscle area was determined and tension responses were normalized to the area measurements. Before normalization of tension data to smooth muscle area, neither the ED50 nor maximum response of small bronchi to the contractile stimuli was altered after chronic ozone exposure. Smooth muscle area was greater in airways isolated from animals that had been exposed to 0.5 ppm ozone. After accounting for smooth muscle area, maximum responses of the small bronchi isolated from male rats were significantly reduced after 0.12 and 0.5 ppm ozone. Although not significant statistically, a similar trend was observed in airways isolated from female rats. These results suggest that the increase in airway responsiveness associated with acute ozone exposure does not persist during near-lifetime exposure. Although the mechanism responsible for the adaptation to the effects of O3 on airway responsiveness is unknown, the results indicate that smooth muscle cell function was compromised by the chronic exposure. The mechanism(s) responsible for mediating this effect and the relevance of these results to humans remains to be determined.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验