Suppr超能文献

γ-氨基丁酸(GABA)通过GABAB受体对大鼠海马切片CA1锥体神经元的多种突触后作用。

Multiple postsynaptic actions of GABA via GABAB receptors on CA1 pyramidal cells of rat hippocampal slices.

作者信息

Pham T M, Lacaille J C

机构信息

Département de Physiologie, Université de Montréal, Quebec, Canada.

出版信息

J Neurophysiol. 1996 Jul;76(1):69-80. doi: 10.1152/jn.1996.76.1.69.

Abstract
  1. The effects of gamma-aminobutyric acid (GABA) on non-GABAA receptors were investigated with intracellular recordings in CA1 pyramidal cells of rat hippocampal slices in the presence of antagonists of GABAA receptors (50 microM bicuculline and 50 microM picrotoxin), N-methyl-D-aspartate (NMDA) and non-NMDA receptors (100 microM 2-amino-5-phosphonopentanoic acid and 40 microM 6-cyano-7-nitroquinoxaline-2,3-dione, respectively), and of a blocker of GABA uptake (1 mM nipecotic acid). The effects of GABA were compared with those of the selective GABAB agonist (-)baclofen [CGP-11973A; (-)BAC]. 2. In the presence of these antagonists, micropressure application of GABA into stratum radiatum evoked hyperpolarizations with relatively fast peak latency (2 s) and decay (12 s). (-)BAC, in the absence of antagonists, hyperpolarized cells, but with a slower time course (peak latency 8 s, decay 78 s). The mean equilibrium potential (Erev) of responses to GABA (-94 mV; n = 11) was similar to that of (-)BAC (-87 mV; n = 8), suggesting that both responses were mediated by K+ conductances. 3. Bath applications of 1 mM Ba2+ partly antagonized GABA responses in a reversible manner. The mean amplitude of the Ba(2+)-resistant GABA response was 46% of control (n = 16, P < 0.05). In contrast, (-) BAC responses were completely abolished by Ba2+ (n = 15), and the effect was reversible. Thus both GABA and (-)BAC activate a common Ba(2+)-sensitive conductance, but GABA may also activate another Ba(2+)-resistant conductance. 4. The Ba(2+)-resistant GABA response had a similar time course to control GABA responses, but its Erev was more depolarized (-79 mV, n = 8, P < 0.05). 5. During recordings with electrodes containing KCl to reverse the Cl- gradient, although GABA responses were smaller in amplitude, their time course and Erev (-91 mV; n = 10) were similar to those recorded with potassium acetate electrodes. Thus Cl- conductances may not be involved in these non-GABAA responses elicited by GABA. 6. During recordings with electrodes containing CsCl to block outward K+ currents, hyperpolarizing GABA responses were not observed (n = 8). In these conditions, GABA elicited depolarizing responses with a faster time course (peak latency 1 s, decay 5 s) than the hyperpolarizing responses recorded with electrodes containing KCl. Thus GABA may produce hyperpolarizations by activating K+ conductances, but it may also produce an additional depolarzing response via other Cs(+)-insensitive conductances. 7. During recordings with electrodes containing LiCl to interfere with G protein activation, hyperpolarizing GABA responses were blocked and depolarizing responses were unmasked (n = 5). These depolarizing responses were generally similar to those recorded with electrodes containing CsCl. GABA responses were also reduced during recordings with electrodes containing the irreversible G protein activator guanosine-5'-O-(3-thiotriphosphate). Thus hyperpolarizing GABA responses may involve G protein activation, but the depolarizing responses may not. 8. Bath application of the selective GABAB antagonist CGP-35348 (1 mM) did not significantly reduce hyperpolarizing GABA responses (18% reduction in amplitude, n = 6, P > 0.05), but completely suppressed (-)BAC responses (n = 2). The more potent and selective GABAB antagonist CGP-55845A (5 microM) abolished all GABA responses (n = 7). Thus all non-GABAA responses elicited by GABA may be mediated by GABAB receptors. 9. In conclusion, GABA, in the presence of GABAA antagonists, may produce in CA1 pyramidal cells two distinct postsynaptic responses mediated via GABAB receptors and G protein activation: l) GABA [and (-)BAC] may activate a Ba(2+)-sensitive K+ conductance, and 2) GABA [but not (-)BAC] may also generate a Ba(2+)-insensitive K+ conductance. GABA may also generate other ionic changes, via GABAB receptors, resulting in depolarization of pyramidal cells.
摘要
  1. 在存在γ-氨基丁酸A型(GABAA)受体拮抗剂(50微摩尔荷包牡丹碱和50微摩尔苦味毒)、N-甲基-D-天冬氨酸(NMDA)和非NMDA受体拮抗剂(分别为100微摩尔2-氨基-5-膦酰基戊酸和40微摩尔6-氰基-7-硝基喹喔啉-2,3-二酮)以及GABA摄取阻滞剂(1毫摩尔尼克酸)的情况下,采用细胞内记录法研究了γ-氨基丁酸(GABA)对非GABAA受体的作用。将GABA的作用与选择性GABAB激动剂(-)巴氯芬[CGP-11973A;(-)BAC]的作用进行了比较。2. 在这些拮抗剂存在的情况下,向辐射层微压施加GABA可诱发超极化,其峰值潜伏期相对较快(2秒),衰减时间为(12秒)。在不存在拮抗剂的情况下,(-)BAC使细胞超极化,但时程较慢(峰值潜伏期8秒,衰减78秒)。对GABA反应的平均平衡电位(Erev)(-94毫伏;n = 11)与(-)BAC的相似(-87毫伏;n = 8),表明两种反应均由钾离子电导介导。3. 浴加1毫摩尔钡离子(Ba2+)可部分可逆地拮抗GABA反应。Ba2+抗性GABA反应的平均幅度为对照的46%(n = 16,P < 0.05)。相比之下,(-)BAC反应被Ba2+完全消除(n = 15),且该效应是可逆的。因此,GABA和(-)BAC均激活一种共同的Ba2+敏感电导,但GABA也可能激活另一种Ba2+抗性电导。4. Ba2+抗性GABA反应的时程与对照GABA反应相似,但其Erev更去极化(-79毫伏,n = 8,P < 0.05)。5. 在使用含氯化钾的电极进行记录以逆转氯离子梯度时,尽管GABA反应幅度较小,但其时程和Erev(-91毫伏;n = 10)与使用醋酸钾电极记录的相似。因此,氯离子电导可能不参与GABA引发的这些非GABAA反应。6. 在使用含氯化铯(CsCl)的电极进行记录以阻断外向钾离子电流时,未观察到超极化的GABA反应(n = 8)。在这些条件下,GABA引发的去极化反应时程比使用含氯化钾电极记录的超极化反应更快(峰值潜伏期1秒,衰减5秒)。因此,GABA可能通过激活钾离子电导产生超极化,但它也可能通过其他对Cs+不敏感的电导产生额外去极化反应。7. 在使用含氯化锂(LiCl)的电极进行记录以干扰G蛋白激活时,超极化的GABA反应被阻断,去极化反应被揭示(n = 5)。这些去极化反应通常与使用含氯化铯电极记录的相似。在使用含不可逆G蛋白激活剂鸟苷-5'-O-(3-硫代三磷酸)的电极进行记录时,GABA反应也降低。因此,超极化的GABA反应可能涉及G蛋白激活,但去极化反应可能不涉及。8. 浴加选择性GABAB拮抗剂CGP-35348(1毫摩尔)并未显著降低超极化的GABA反应(幅度降低18%,n = 6,P > 0.05),但完全抑制了(-)BAC反应(n = 2)。更强效和选择性的GABAB拮抗剂CGP-55845A(5微摩尔)消除了所有GABA反应(n = 7)。因此,GABA引发的所有非GABAA反应可能均由GABAB受体介导。9. 总之,在存在GABAA拮抗剂的情况下,GABA可能在CA1锥体细胞中产生两种由GABAB受体和G蛋白激活介导的不同突触后反应:l)GABA [和(-)BAC]可能激活一种Ba2+敏感的钾离子电导,以及2)GABA [但不是(-)BAC]也可能产生一种Ba2+不敏感的钾离子电导。GABA还可能通过GABAB受体产生其他离子变化,导致锥体细胞去极化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验