Suppr超能文献

大鼠海马中GABAB自身受体的突触激活对兴奋性突触后电位的调节

Regulation of EPSPs by the synaptic activation of GABAB autoreceptors in rat hippocampus.

作者信息

Davies C H, Collingridge G L

机构信息

Department of Pharmacology, University of Edinburgh, UK.

出版信息

J Physiol. 1996 Oct 15;496 ( Pt 2)(Pt 2):451-70. doi: 10.1113/jphysiol.1996.sp021698.

Abstract
  1. Intracellular recording was used to study the influence of GABAB autoreceptor-mediated regulation of monosynaptic GABAA and GABAB receptor-mediated hyperpolarizing inhibitory postsynaptic potentials (IPSPAs and IPSPBs, respectively) on alpha-amino-3-hydroxy-5-methyl -4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor-mediated excitatory postsynaptic potentials (EPSPAs and EPSPNs, respectively) in the CA1 region of rat hippocampal slices. To achieve this, synaptic potential were evoked monosynaptically by near stimulation following blockade of either EPSPNs, by the NMDA receptor antagonist (R)-2-amino-5-phosphonopentanoate (AP5; 0.05 mM), or EPSPAs, by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 0.01 mM). 2. Paired-pulse stimulation at 3-50 Hz caused an increase in the duration (paired-pulse widening) of EPSPAs, which paralleled the time course of paired-pulse depression of monosynaptic IPSCs, and a potentiation of the amplitude (paired-pulse potentiation) of EPSPAs, which did not. Paired-pulse stimulation also caused frequency-dependent changes in EPSPNs. At frequencies > 40 Hz it produced paired-pulse depression of EPSPNs, along with marked summation of IPSPS, and at frequencies < 40 Hz it caused paired-pulsed enlargement of EPSPNs, concomitant with a reduction in IPSPS. 3. Paired-pulse potentiation of EPSPAs at 50 Hz was enhanced by picrotoxin (0.1 mM) but was not significantly affected by 3-amino-propyl(diethoxymethyl)phosphinic acid (CGP 35348; 1 mM). Paired-pulse depression of EPSPNs at 50 Hz was converted to paired-pulse enlargement by picrotoxin but was unaffected by CGP 35348. These effects can be explained by block of IPSPAs by picrotoxin. 4. Paired-pulsed widening of EPSPAs at 5 Hz was occluded by picrotoxin and abolished by CGP 35348. Similarly, paired-pulsed enlargement of EPSPNs at 5 Hz was occluded, and in some cases converted to paired-pulse depression, by picrotoxin. The effects of CGP 35348 were more complex in that this antagonist reduced paired-pulse enlargement of EPSPNs in control medium whereas it eliminated paired-pulsed depression of EPSPNs in the presence of picrotoxin, effects consistent with its block of GABAB autoreceptors and IPSPBS, respectively. 5. 'Priming' using a 'priming stimulation protocol' (a single 'priming stimulus' followed at 1-50 Hz ('priming frequency') by a 'primed burst' of four shocks at 20-100 Hz ('burst frequency')) caused an increase in both 'primed' EPSPAs and EPSPNs compared with 'unprimed' EPSPAs and EPSPNs. This effect was optimal when the respective priming and burst frequencies were 5 and 100 Hz. 6. In the presence of either picrotoxin or CGP 35348 the primed EPSPAs and EPSPNs resembled unprimed EPSPAs and EPSPNs, respectively. This was because picrotoxin occluded whereas CGP 35348 blocked the effect of priming on EPSPS. 7. CGP 35348 had only modest effects on EPSPAs but enhanced EPSPNs evoked by a tetanus (20 stimuli at 100 Hz), in either the presence or absence of picrotoxin. In the absence of picrotoxin, CGP 35348 also promoted depolarization by enhancing a depolarizing GABAA receptor-mediated component (IPSPD). These effects can all be attributed to block of IPSPBS by CGP 35348. 8. CGP 35348 blocked the induction of long-term potentiation (LTP) of extracellularly recorded field EPSPs elicited by a priming stimulation protocol in control medium but was ineffective in the presence of picrotoxin. CGP 35348 was also ineffective at preventing tetanus-induced LTP (100 Hz, 1 s) in both the absence and presence of picrotoxin. 9. These data demonstrate the complex regulation of AMPA and NMDA receptor-mediated EPSPs during various patterns of synaptic activation caused by the dynamic changes in GABA-mediated synaptic inhibition, which are orchestrated by GABAA autoreceptors in a frequency-dependent
摘要
  1. 采用细胞内记录法,研究GABAB自身受体介导的对单突触GABAA和GABAB受体介导的超极化抑制性突触后电位(分别为IPSPA和IPSPB)的调节,对大鼠海马切片CA1区α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)和N-甲基-D-天冬氨酸(NMDA)受体介导的兴奋性突触后电位(分别为EPSPA和EPSPN)的影响。为此,在分别用NMDA受体拮抗剂(R)-2-氨基-5-膦酰基戊酸(AP5;0.05 mM)阻断EPSPN或用AMPA/海人藻酸受体拮抗剂6-氰基-7-硝基喹喔啉-2,3-二酮(CNQX;0.01 mM)阻断EPSPA后,通过近距离刺激单突触诱发突触电位。2. 3 - 50 Hz的配对脉冲刺激导致EPSPA的持续时间增加(配对脉冲增宽),这与单突触IPSC的配对脉冲抑制的时间进程平行,而EPSPA的幅度增强(配对脉冲增强)则不然。配对脉冲刺激还导致EPSPN出现频率依赖性变化。在频率>40 Hz时,它使EPSPN产生配对脉冲抑制,同时IPSP出现明显总和,而在频率<40 Hz时,它使EPSPN出现配对脉冲增大,并伴有IPSP减少。3. 0.1 mM的印防己毒素增强了50 Hz时EPSPA的配对脉冲增强,但1 mM的3 - 氨基丙基(二乙氧基甲基)次膦酸(CGP 35348)对其无显著影响。50 Hz时EPSPN的配对脉冲抑制被印防己毒素转变为配对脉冲增大,但不受CGP 35348影响。这些效应可用印防己毒素阻断IPSPA来解释。4. 5 Hz时EPSPA的配对脉冲增宽被印防己毒素阻断,并被CGP 35348消除。同样,5 Hz时EPSPN的配对脉冲增大被印防己毒素阻断,在某些情况下转变为配对脉冲抑制。CGP 35348的作用更为复杂,因为该拮抗剂在对照介质中减少了EPSPN的配对脉冲增大,而在有印防己毒素存在时消除了EPSPN的配对脉冲抑制,这些效应分别与其阻断GABAB自身受体和IPSPB一致。5. 使用“预刺激方案”(一个“预刺激”,随后在1 - 50 Hz(“预刺激频率”)下以20 - 100 Hz(“爆发频率”)施加四个刺激的“爆发”)进行“预刺激”,与“未预刺激”的EPSPA和EPSPN相比,导致“预刺激”的EPSPA和EPSPN均增加。当各自的预刺激和爆发频率分别为5和100 Hz时,这种效应最佳。6. 在有印防己毒素或CGP 35348存在时,预刺激的EPSPA和EPSPN分别类似于未预刺激的EPSPA和EPSPN。这是因为印防己毒素阻断了预刺激对EPSP的作用,而CGP 35348则阻断了这种作用。7. CGP 35348对EPSPA只有适度影响,但在有或无印防己毒素存在时,均增强了由强直刺激(100 Hz,20个刺激)诱发的EPSPN。在无印防己毒素时,CGP 35348还通过增强去极化的GABAA受体介导的成分(IPSPD)促进去极化。这些效应都可归因于CGP 35348阻断了IPSPB。8. CGP 35348在对照介质中阻断了由预刺激方案诱发的细胞外记录的场EPSP的长时程增强(LTP)的诱导,但在有印防己毒素存在时无效。CGP 35348在无和有印防己毒素存在时,对预防强直刺激诱导的LTP(100 Hz,1 s)也无效。9. 这些数据表明,在由GABAA自身受体以频率依赖性方式精心调控的GABA介导的突触抑制的动态变化所引起的各种突触激活模式期间,AMPA和NMDA受体介导的EPSP受到复杂的调节。

相似文献

引用本文的文献

6
Dorsal-Ventral Differences in Modulation of Synaptic Transmission in the Hippocampus.海马体中突触传递调节的背腹差异。
Front Synaptic Neurosci. 2020 Jun 18;12:24. doi: 10.3389/fnsyn.2020.00024. eCollection 2020.
7
Proteolytic Degradation of Hippocampal STEP in LTP and Learning.海马 STEP 在长时程增强和学习中的蛋白水解降解。
Mol Neurobiol. 2019 Feb;56(2):1475-1487. doi: 10.1007/s12035-018-1170-1. Epub 2018 Jun 12.
8
Gβγ SNARE Interactions and Their Behavioral Effects.Gβγ SNARE 相互作用及其行为效应。
Neurochem Res. 2019 Mar;44(3):636-649. doi: 10.1007/s11064-018-2531-x. Epub 2018 May 11.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验