Suppr超能文献

Effect of glimepiride (HOE 490) on insulin receptors of skeletal muscles from genetically diabetic KK-Ay mouse.

作者信息

Takada Y, Takata Y, Iwanishi M, Imamura T, Sawa T, Morioka H, Ishihara H, Ishiki M, Usui I, Temaru R, Urakaze M, Satoh Y, Inami T, Tsuda S, Kobayashi M

机构信息

First Department of Medicine, Toyama Medical and Pharmaceutical University, Japan.

出版信息

Eur J Pharmacol. 1996 Jul 18;308(2):205-10. doi: 10.1016/0014-2999(96)00288-9.

Abstract

A new sulfonylurea, glimepiride (HOE 490), has been developed for the glycemic control in non-insulin-dependent diabetes mellitus. We examined the effect of glimepiride on glucose and insulin levels in KK-Ay mice, an animal model of non-insulin-dependent diabetes mellitus, which is characterized by hyperglycemia and hyperinsulinemia. Administration of glimepiride (0.5 mg/kg/day) for 8 weeks to KK-Ay mice resulted in decrease in glucose (297 +/- 36 to 250 +/- 51 mg/dl) and insulin (76 +/- 14 to 41 +/- 14 microU/ml) levels. To clarify the mechanism of the agent, we examined the effect of this new drug on insulin receptors in the skeletal muscles. There was no difference in insulin binding to the receptors from both glimepiride-treated and -untreated KK-Ay mice muscles. The insulin-stimulated autophosphorylation of insulin receptors from KK-Ay mice was decreased compared to that from normal mice (5 +/- 1 vs. 39 +/- 13% over basal). Glimepiride did not ameliorate impaired insulin-stimulated insulin receptor autophosphorylation. To determine the effect of glimepiride on post-insulin receptor signaling pathway, we measured 2-[3H]glycerol incorporation into diacylglycerol in the cultured rat fibroblast cell line overexpressing human insulin receptors. Glimepiride (100 microM) as well as insulin (10 nM) significantly stimulated diacylglycerol production. These results suggest that glimepiride has a potent extrapancreatic effect on glucose metabolism and may directly stimulate glucose transport activity through phospholipid signaling pathway, but not through insulin receptor kinase signaling pathway.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验