Suppr超能文献

在临床试验中使用严重程度而非随机化进行分配:Robbins-Zhang方法的蒙特卡洛检验及实际示例

Using severity rather than randomization for assignment in clinical trials: Monte Carlo tests and practical illustrations of the Robbins-Zhang method.

作者信息

Ross D C

机构信息

New York State Psychiatric Institute, Unit 19, NY 10032, USA.

出版信息

J Psychiatr Res. 1995 Jul-Aug;29(4):315-32. doi: 10.1016/0022-3956(95)00022-w.

Abstract

In randomized clinical trials, patients are not differentially assigned to treatments by severity because available methods of data analysis are sensitive to regression to the mean and yield biased estimates of treatment effect. However, a method proposed by Robbins and Zhang provides consistent estimates of treatment effect in clinical trials, even when the more severely ill are assigned to the active treatment and the less severely ill are assigned to a placebo. This method was assessed by Monte Carlo trials. All combinations of two models of drug effect, five true score distributions, four magnitudes of error variance, and four sample sizes were assessed. The method works sufficiently well that its use should be considered. Further, the method gives correct results even when the regression discontinuity method fails. The method was also compared with a standard analysis of variance of difference scores using real psychiatric data from two ordinary randomized trials; similar results were obtained by both methods.

摘要

在随机临床试验中,由于现有的数据分析方法对均值回归敏感,会产生有偏差的治疗效果估计值,所以患者不会按照病情严重程度被差异分配至不同治疗组。然而,罗宾斯和张提出的一种方法能够在临床试验中提供一致的治疗效果估计值,即便病情较重的患者被分配接受活性治疗,病情较轻的患者被分配接受安慰剂治疗。该方法通过蒙特卡罗试验进行了评估。对药物效应的两种模型、五种真实分数分布、四种误差方差大小以及四种样本量的所有组合都进行了评估。该方法效果良好,值得考虑使用。此外,即使回归断点法失效,该方法也能给出正确结果。还使用来自两项普通随机试验的真实精神病学数据,将该方法与差异分数的标准方差分析进行了比较;两种方法得到了相似的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验