Bettati S, Mozzarelli A, Rossi G L, Tsuneshige A, Yonetani T, Eaton W A, Henry E R
Institute of Biochemical Sciences, University of Parma, Italy.
Proteins. 1996 Aug;25(4):425-37. doi: 10.1002/prot.3.
Oxygen binding by the human hemoglobin tetramer in the T quaternary structure is apparently noncooperative in the crystalline state (Hill n = 1.0), as predicted by the two-state allosteric model of Monod, Wyman, and Changeux (MWC) (Mozzarelli et al., Nature 351:416-419, 1991; Rivetti et al., Biochemistry 32:2888-2906, 1993). However, cooperativity within the tetramer can be masked by a difference in affinity between the alpha and beta subunits. Indeed, analysis of the binding curves derived from absorption of light polarized along two different crystal directions, for which the projections of the alpha and beta hemes are slightly different, revealed an inequivalence in the intrinsic oxygen affinity of the alpha and beta subunits (p50(alpha) approximately 80 torr, p50(beta) approximately 370 torr at 15 degrees C) that compensates a small amount of cooperativity (Rivetti et al., Biochemistry 32:2888-2906, 1993). To further investigate this problem, we have measured oxygen binding curves of single crystals of hemoglobin (in a different lattice) in which the iron in the alpha subunits has been replaced by the non-oxygen-binding nickel(II). The Hill n is 0.90 +/- 0.06, and the p50 is slightly different for light polarized parallel to different crystal directions, indicating a very small difference in affinity between the two crystallographically inequivalent beta subunits. The average crystal p50 is 110 +/- 20 torr at 15 degrees C, close to the p50 of 80 torr observed in solution, but about threefold less than the p50 calculated by Rivetti et al. (Biochemistry 32:2888-2906, 1993) for the beta subunits of the unsubstituted tetramer. These results suggest that Rivetti et al., if anything, overestimated the alpha/beta inequivalence. They therefore did not underestimate the cooperativity within the T quaternary structure, when they concluded that it represents a small deviation from the perfectly noncooperative binding of an MWC allosteric model. Our conclusion of nearly perfect MWC behavior for binding to the T state of unmodified hemoglobin raises the question of the relevance of the large T-state cooperativity inferred for cyanide binding to partially oxidized hemoglobin (Ackers et al., Science 255:54-63, 1992).
在晶体状态下,处于T四级结构的人血红蛋白四聚体的氧结合显然是非协同性的(希尔系数n = 1.0),正如莫诺德、怀曼和尚热(MWC)的二态别构模型所预测的那样(莫扎雷利等人,《自然》351:416 - 419,1991;里韦蒂等人,《生物化学》32:2888 - 2906,1993)。然而,四聚体内的协同性可能会被α亚基和β亚基之间亲和力的差异所掩盖。实际上,对沿两个不同晶体方向偏振的光吸收所得到的结合曲线进行分析,α和β血红素的投影略有不同,结果显示α亚基和β亚基的内在氧亲和力存在不等价性(在15℃时,p50(α)约为80托,p50(β)约为370托),这抵消了少量的协同性(里韦蒂等人,《生物化学》32:2888 - 2906,1993)。为了进一步研究这个问题,我们测量了血红蛋白单晶(处于不同晶格)的氧结合曲线,其中α亚基中的铁已被非氧结合的镍(II)取代。希尔系数n为0.90±0.06,对于平行于不同晶体方向偏振的光,p50略有不同,这表明两个晶体学上不等价的β亚基之间的亲和力差异非常小。在15℃时,晶体的平均p50为110±20托,接近在溶液中观察到的80托的p50,但比里韦蒂等人(《生物化学》32:2888 - 2906,1993)计算的未取代四聚体β亚基的p50小约三倍。这些结果表明,里韦蒂等人如果有什么问题的话,是高估了α/β的不等价性。因此,当他们得出结论认为T四级结构代表了与MWC别构模型的完全非协同性结合的微小偏差时,他们并没有低估T四级结构内的协同性。我们关于未修饰血红蛋白与T态结合近乎完美的MWC行为的结论,引发了对于推断的氰化物与部分氧化血红蛋白结合的大T态协同性的相关性问题(阿克斯等人,《科学》255:54 - 63,1992)。