Suppr超能文献

利用光谱相关性对组织微观结构散射体分布进行表征。

Characterization of tissue microstructure scatterer distribution with spectral correlation.

作者信息

Varghese T, Donohue K D

机构信息

Department of Electrical Engineering, University of Kentucky, Lexington 40503, USA.

出版信息

Ultrason Imaging. 1993 Jul;15(3):238-54. doi: 10.1177/016173469301500304.

Abstract

Characterization of tissue microstructure from the backscattered ultrasound signal using the spectral autocorrelation (SAC) function provides information about the scatterer distribution in biological tissue. This paper demonstrates SAC capabilities in characterizing periodicities in A-scans due to regularity in the scatterer distribution. The A-scan is modelled as a cyclostationary signal, where the statistical parameters of the signal vary in time with single or multiple periodicities. This periodicity manifests itself as spectral peaks both in the power spectral density (PSD) and in the SAC. Periodicity in the PSD will produce a well defined dominant peak in the cepstrum, which has been used to determine the scatterer spacing. The relationship between the scatterer spacing and the spacing of the spectral peaks is established using a stochastic model of the echo-formation process from biological tissue. The distribution of the scatterers within the microstructure is modelled using a Gamma function, which offers a flexible method of simulating parametric regularity in the scatterer spacing. Simulations of the tissue microstructure for lower orders of regularity indicate that the SAC components reveal information about the scatterer spacing that are not seen in the PSD and the cepstrum. The echoformation process is tested by simulating microstructure of varying regularity and analyzing their effect on the SAC, PSD and cepstrum. Experimental validation of the simulation results are provided using in vivo scans of the breast and liver tissue that show the presence of significant spectral correlation components in the SAC.

摘要

利用谱自相关(SAC)函数从背向散射超声信号中表征组织微观结构,可提供有关生物组织中散射体分布的信息。本文展示了SAC在表征由于散射体分布规律而在A扫描中出现的周期性方面的能力。A扫描被建模为一个循环平稳信号,其中信号的统计参数随单个或多个周期随时间变化。这种周期性在功率谱密度(PSD)和SAC中均表现为谱峰。PSD中的周期性将在倒谱中产生一个定义明确的主峰,该主峰已被用于确定散射体间距。利用生物组织回波形成过程的随机模型,建立了散射体间距与谱峰间距之间的关系。使用伽马函数对微观结构内散射体的分布进行建模,该函数提供了一种灵活的方法来模拟散射体间距中的参数规律性。对较低规则度的组织微观结构进行模拟表明,SAC分量揭示了PSD和倒谱中未出现的有关散射体间距的信息。通过模拟不同规则度的微观结构并分析它们对SAC、PSD和倒谱的影响,对回波形成过程进行了测试。利用乳房和肝脏组织的体内扫描对模拟结果进行了实验验证,扫描结果显示SAC中存在显著的谱相关分量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验