Suppr超能文献

事件相关生物电信号的波形估计技术:性能研究

Waveform estimation techniques for event-related bioelectric signals: a study of performance.

作者信息

Abou-Chadi F E

机构信息

Department of Electrical Communications, Faculty of Engineering, Mansoura University, Egypt.

出版信息

Front Med Biol Eng. 1996;7(3):221-41.

PMID:8882907
Abstract

Many bioelectric signals result from the electrical response of a physiological system to an impulse that can be internal (ECG signals) or external (evoked potentials). A comparative study of performance of seven waveform estimation techniques used for event-related signals that are time-locked to a stimulus is presented in this paper. Computer generate 1 signals and noise for several signal-to-noise ratios (SNRs) are used to make ensembles of simulated noisy waveforms. The performance of each technique is numerically investigated using the root-mean-squared error and two well known SNR estimators. The results show that an adaptive impulse correlated filter performs the best. It is capable of estimating the deterministic component of the signal and removes the noise uncorrelated with stimulus even if this noise is colored and without the need for prealignment.

摘要

许多生物电信号源自生理系统对内部(心电图信号)或外部(诱发电位)冲动的电反应。本文对用于与刺激时间锁定的事件相关信号的七种波形估计技术的性能进行了比较研究。使用计算机生成具有几种信噪比(SNR)的信号和噪声,以制作模拟噪声波形的集合。使用均方根误差和两种著名的SNR估计器对每种技术的性能进行了数值研究。结果表明,自适应脉冲相关滤波器性能最佳。它能够估计信号的确定性成分,并去除与刺激不相关的噪声,即使这种噪声是有色的,且无需预对齐。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验