Schram V, Lin H N, Thompson T E
Department of Biochemistry, University of Virginia, Charlottesville, 22908, USA.
Biophys J. 1996 Oct;71(4):1811-22. doi: 10.1016/S0006-3495(96)79382-7.
The influence of the lipid mixing properties on the lateral organization in a two-component, two-phase phosphatidylcholine bilayer was investigated using both an experimental (fluorescence recovery after photobleaching (FRAP)) and a simulated (Monte Carlo) approach. With the FRAP technique, we have examined binary mixtures of 1-stearoyl-2-capryl-phosphatidylcholine/1,2-distearoyl-phosphat idylcholine (C18C10PC/DSPC), and 1-stearoyl-2-capryl-phosphatidylcholine/1,2-dipalmitoyl-phospha tid ylcholine (C18C10PC/DPPC). Comparison with the 1,2-dimyristoyl-phosphatidylcholine/1,2-distearoyl-phosphatidylcholine (DMPC/DSPC) previously investigated by FRAP by Vaz and co-workers (Biophys. J., 1989, 56:869-876) shows that the gel phase domains become more effective in restricting the diffusion coefficient when the ideality of the mixture increases (i.e., in the order C18C10PC/DSPC-->C18C10PC/DPPC-->DMPC/DSPC). However, an increased lipid miscibility is accompanied by an increasing compositional dependence: the higher the proportion of the high-temperature melting component, the less efficient the gel phase is in compartmentalizing the diffusion plane, a trend that is best accounted for by a variation of the gel phase domain shape rather than size. Computer-simulated fluorescence recoveries obtained in a matrix obstructed with obstacle aggregates of various fractal dimension demonstrate that: 1) for a given obstacle size and area fraction, the relative diffusion coefficient increases linearly with the obstacle fractal dimension and 2) aggregates with a lower fractal dimension are more efficient in compartmentalizing the diffusion plane. Comparison of the simulated with the experimental mobile fractions strongly suggests that the fractal dimension of the gel phase domains increases with the proportion of high-temperature melting component in DMPC/DSPC and (slightly) in C18C10PC/DPPC.
利用实验方法(光漂白后荧光恢复技术(FRAP))和模拟方法(蒙特卡罗方法),研究了脂质混合性质对双组分、两相磷脂酰胆碱双层膜横向组织的影响。通过FRAP技术,我们研究了1-硬脂酰-2-辛酰磷脂酰胆碱/1,2-二硬脂酰磷脂酰胆碱(C18C10PC/DSPC)和1-硬脂酰-2-辛酰磷脂酰胆碱/1,2-二棕榈酰磷脂酰胆碱(C18C10PC/DPPC)的二元混合物。与先前Vaz及其同事通过FRAP研究的1,2-二肉豆蔻酰磷脂酰胆碱/1,2-二硬脂酰磷脂酰胆碱(DMPC/DSPC)相比(《生物物理杂志》,1989年,56:869 - 876),结果表明,当混合物的理想性增加时(即按照C18C10PC/DSPC-->C18C10PC/DPPC-->DMPC/DSPC的顺序),凝胶相区域在限制扩散系数方面变得更有效。然而,脂质混溶性增加伴随着组成依赖性的增加:高温熔化组分的比例越高,凝胶相在分隔扩散平面方面的效率越低,这种趋势最好用凝胶相区域形状而非大小的变化来解释。在具有不同分形维数的障碍物聚集体阻碍的基质中获得的计算机模拟荧光恢复结果表明:1)对于给定的障碍物大小和面积分数,相对扩散系数随障碍物分形维数线性增加;2)分形维数较低的聚集体在分隔扩散平面方面更有效。模拟的与实验的可移动部分的比较强烈表明,在DMPC/DSPC以及(略微)在C18C10PC/DPPC中,凝胶相区域的分形维数随高温熔化组分的比例增加。