Sugár István P, Biltonen Rodney L
Graduate School of Biological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA.
J Phys Chem B. 2005 Apr 21;109(15):7373-86. doi: 10.1021/jp045669x.
Lateral diffusion of membrane components makes possible any in-plane membrane reaction and has a key role in signaling in cell membranes. In this report the equilibrium lateral diffusion of intrinsic molecules in an equimolar DMPC/DSPC mixture is simulated using a thoroughly tested two-state model of two-component phospholipid bilayers. The model has been successful in calculating the excess heat capacity function, the most frequent center-to-center distances between DSPC clusters, and the fractal dimensions of gel clusters (Sugar, I. P., Thompson, T. E., Biltonen, R. L. Biophys. J. 1999, 76, 2099-2110). In the gel/fluid mixed phase region, a diffusing intrinsic molecule may change its state from fluid to gel (or from gel to fluid) at any time. A common characterization of the diffusion of intrinsic molecules is given by the simulated average first-passage time curves. We find that these curves can be described as power functions containing two parameters, alpha and beta, except near the percolation threshold of gel/fluid or compositional clusters. We find also that the intrinsic molecules are involved in approximately normal diffusion, i.e., beta approximately 2 in the extreme gel and fluid phase regions, while in the gel/fluid and gel/gel mixed phase regions the diffusion is anomalous, i.e., beta not equal 2. In the mixed phase regions, when the initial local state of the diffusing molecule is not specified, each component is involved in sub-diffusion (beta > 2). In the gel/fluid mixed phase region molecules situated initially inside a fluid cluster are involved in sub-diffusion, but DMPC molecules situated initially inside a gel cluster are involved in super-diffusion (beta < 2). The possibility of anomalous diffusion in membranes apparently arises because the diffusing molecule visits a variety of different environments characterized by its relative proximity to various membrane components. The diffusion is actually anomalous when the components of the bilayer are nonrandomly distributed. The deviation from random distribution is strongly correlated with beta. Similar to the results of the NMR experiments, the calculated relative diffusion coefficient continuously decreases in the gel/fluid mixed phase region with decreasing temperature. In apparent contradiction, diffusion measured by fluorescence recovery after photobleaching (FRAP) demonstrates the existence of a threshold temperature, below which long-range diffusion of FRAP probe molecules is essentially blocked. This threshold temperature is highly correlated with the percolation temperature of gel clusters.
膜成分的横向扩散使得任何平面内的膜反应成为可能,并且在细胞膜信号传导中起关键作用。在本报告中,使用经过充分测试的双组分磷脂双层的两态模型,模拟了等摩尔DMPC/DSPC混合物中内在分子的平衡横向扩散。该模型成功地计算了过量热容函数、DSPC簇之间最常见的中心到中心距离以及凝胶簇的分形维数(Sugar, I. P., Thompson, T. E., Biltonen, R. L. Biophys. J. 1999, 76, 2099 - 2110)。在凝胶/流体混合相区域,一个扩散的内在分子可能在任何时候从流体状态转变为凝胶状态(或从凝胶状态转变为流体状态)。内在分子扩散的一个常见特征由模拟的平均首次通过时间曲线给出。我们发现,这些曲线可以描述为包含两个参数α和β的幂函数,但在凝胶/流体或组成簇的渗流阈值附近除外。我们还发现,内在分子参与近似正常扩散,即在极端凝胶和流体相区域β约为2,而在凝胶/流体和凝胶/凝胶混合相区域扩散是反常的,即β不等于2。在混合相区域,当扩散分子的初始局部状态未指定时,每个组分都参与亚扩散(β>2)。在凝胶/流体混合相区域,最初位于流体簇内的分子参与亚扩散,但最初位于凝胶簇内的DMPC分子参与超扩散(β<2)。膜中反常扩散的可能性显然是因为扩散分子会进入各种不同的环境,这些环境的特征是其与各种膜成分的相对接近程度。当双层的成分非随机分布时,扩散实际上就是反常的。与随机分布的偏差与β密切相关。与NMR实验结果类似,计算得到的相对扩散系数在凝胶/流体混合相区域随着温度降低而持续下降。明显矛盾的是,光漂白后荧光恢复(FRAP)测量的扩散表明存在一个阈值温度,低于该温度,FRAP探针分子的长程扩散基本上被阻断。这个阈值温度与凝胶簇的渗流温度高度相关。