Suppr超能文献

大肠杆菌α-溶血素在脂质双层中的可逆吸附和不可逆插入

Reversible adsorption and nonreversible insertion of Escherichia coli alpha-hemolysin into lipid bilayers.

作者信息

Bakás L, Ostolaza H, Vaz W L, Goñi F M

机构信息

Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.

出版信息

Biophys J. 1996 Oct;71(4):1869-76. doi: 10.1016/S0006-3495(96)79386-4.

Abstract

Alpha-Hemolysin is an extracellular protein toxin (107 kDa) produced by some pathogenic strains of Escherichia coli. Although stable in aqueous medium, it can bind to lipid bilayers and produce membrane disruption in model and cell membranes. Previous studies had shown that toxin binding to the bilayer did not always lead to membrane lysis. In this paper, we find that alpha-hemolysin may bind the membranes in at least two ways, a reversible adsorption and an irreversible insertion. Reversibility is detected by the ability of liposome-bound toxin to induce hemolysis of added horse erythrocytes; insertion is accompanied by an increase in the protein intrinsic fluorescence. Toxin insertion does not necessarily lead to membrane lysis. Studies of alpha-hemolysin insertion into bilayers formed from a variety of single phospholipids, or binary mixtures of phospholipids, or of phospholipid and cholesterol, reveal that irreversible insertion is favored by fluid over gel states, by low over high cholesterol concentrations, by disordered liquid phases over gel or ordered liquid phases, and by gel over ordered liquid phases. These results are relevant to the mechanism of action of alpha-hemolysin and provide new insights into the membrane insertion of large proteins.

摘要

α-溶血素是由某些致病性大肠杆菌菌株产生的一种细胞外蛋白质毒素(107 kDa)。尽管它在水性介质中稳定,但能与脂质双层结合,并在模型膜和细胞膜中造成膜破坏。先前的研究表明,毒素与双层的结合并不总是导致膜裂解。在本文中,我们发现α-溶血素可能至少通过两种方式与膜结合,一种是可逆吸附,另一种是不可逆插入。通过脂质体结合毒素诱导添加的马红细胞溶血的能力来检测可逆性;插入伴随着蛋白质固有荧光的增加。毒素插入不一定导致膜裂解。对α-溶血素插入由各种单一磷脂、磷脂二元混合物或磷脂与胆固醇形成的双层的研究表明,流体状态比凝胶状态更有利于不可逆插入,低胆固醇浓度比高胆固醇浓度更有利于不可逆插入,无序液相比凝胶或有序液相更有利于不可逆插入,凝胶相比有序液相更有利于不可逆插入。这些结果与α-溶血素的作用机制相关,并为大型蛋白质的膜插入提供了新的见解。

相似文献

1
4
Boundary region between coexisting lipid phases as initial binding sites for Escherichia coli alpha-hemolysin: a real-time study.
Biochim Biophys Acta. 2014 Jul;1838(7):1832-41. doi: 10.1016/j.bbamem.2014.02.022. Epub 2014 Mar 7.
6
Acyl chains are responsible for the irreversibility in the Escherichia coli alpha-hemolysin binding to membranes.
Chem Phys Lipids. 2003 Jan;122(1-2):185-90. doi: 10.1016/s0009-3084(02)00191-3.
7
Calcium-dependent conformation of E. coli alpha-haemolysin. Implications for the mechanism of membrane insertion and lysis.
Biochim Biophys Acta. 1998 Jan 19;1368(2):225-34. doi: 10.1016/s0005-2736(97)00181-8.
8
α-Hemolysin pore formation into a supported phospholipid bilayer using cell-free expression.
Biochim Biophys Acta. 2011 Jan;1808(1):271-8. doi: 10.1016/j.bbamem.2010.07.027. Epub 2010 Aug 6.
9
Purification of Escherichia coli pro-haemolysin, and a comparison with the properties of mature alpha-haemolysin.
Eur J Biochem. 1996 Jun 1;238(2):418-22. doi: 10.1111/j.1432-1033.1996.0418z.x.
10
E. coli alpha-hemolysin: a membrane-active protein toxin.
Braz J Med Biol Res. 1998 Aug;31(8):1019-34. doi: 10.1590/s0100-879x1998000800002.

引用本文的文献

1
Fold-switching proteins.
ArXiv. 2025 Jul 14:arXiv:2507.10839v1.
5
Membrane Permeabilization by Pore-Forming RTX Toxins: What Kind of Lesions Do These Toxins Form?
Toxins (Basel). 2019 Jun 18;11(6):354. doi: 10.3390/toxins11060354.
6
Controlling Secretion in Artificial Cells with a Membrane AND Gate.
ACS Synth Biol. 2019 Jun 21;8(6):1224-1230. doi: 10.1021/acssynbio.8b00435. Epub 2019 May 14.
7
Insertion and self-diffusion of a monotopic protein, the Aquifex aeolicus sulfide quinone reductase, in supported lipid bilayers.
Eur Phys J E Soft Matter. 2015 Oct;38(10):110. doi: 10.1140/epje/i2015-15110-8. Epub 2015 Oct 22.
8
Probing peptide and protein insertion in a biomimetic S-layer supported lipid membrane platform.
Int J Mol Sci. 2015 Jan 27;16(2):2824-38. doi: 10.3390/ijms16022824.
9
Bacterial RTX toxins allow acute ATP release from human erythrocytes directly through the toxin pore.
J Biol Chem. 2014 Jul 4;289(27):19098-109. doi: 10.1074/jbc.M114.571414. Epub 2014 May 23.
10

本文引用的文献

3
Transport of proteins across membranes--a paradigm in transition.
Biochim Biophys Acta. 1995 Dec 20;1241(3):341-70. doi: 10.1016/0304-4157(95)00009-7.
4
Phase equilibria and local structure in binary lipid bilayers.
Biochim Biophys Acta. 1993 Oct 10;1152(1):135-45. doi: 10.1016/0005-2736(93)90240-z.
5
Cholesterol and the Golgi apparatus.
Science. 1993 Sep 3;261(5126):1280-1. doi: 10.1126/science.8362242.
6
Effect of cholesterol on the polymorphism of dipalmitoylphosphatidylcholine/melittin complexes: an NMR study.
Biochim Biophys Acta. 1993 Jul 4;1149(2):319-28. doi: 10.1016/0005-2736(93)90217-n.
7
Protein import into mitochondria: a paradigm for the translocation of polypeptides across membranes.
Curr Opin Cell Biol. 1993 Aug;5(4):694-700. doi: 10.1016/0955-0674(93)90142-d.
8
Oligomerization of Escherichia coli haemolysin (HlyA) is involved in pore formation.
Mol Gen Genet. 1993 Oct;241(1-2):89-96. doi: 10.1007/BF00280205.
9
Anionic phospholipids and protein translocation.
FEBS Lett. 1994 Jun 6;346(1):78-82. doi: 10.1016/0014-5793(94)00404-8.
10
Specificity and promiscuity in membrane helix interactions.
FEBS Lett. 1994 Jun 6;346(1):17-20. doi: 10.1016/0014-5793(94)00467-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验