Suppr超能文献

Sensitivity, reproducibility, and accuracy in short tandem repeat genotyping using capillary array electrophoresis.

作者信息

Mansfield E S, Vainer M, Enad S, Barker D L, Harris D, Rappaport E, Fortina P

机构信息

Molecular Dynamics, Inc., Sunnyvale, California 94086, USA.

出版信息

Genome Res. 1996 Sep;6(9):893-903. doi: 10.1101/gr.6.9.893.

Abstract

The Human Genome Initiative has increased significantly the rate at which disease-causing genes are being mapped and sequenced. New cost-effective methods to locate the genes and to characterize disease-causing mutations require robust, reproducible, and accurate protocols for measuring DNA fragment lengths. Capillary array electrophoresis (CAE) offers rapid, high-resolution separations, high throughput, and sensitive detection. To assess the utility of CAE for the accumulation of genetic information, we tested both sizing accuracy and reproducibility using 48-capillary prototype systems. Two multiplex PCR allelic ladder standards and several CA-repeat markers were analyzed in > 100 runs. Reproducibility in typing > 8000 genotypes reveals a standard deviation of less than 0.2 bp on these systems under optimized conditions. However, sequence-dependent migration anomalies were observed at most simple sequence loci even when analyzed under denaturing conditions, resulting in a systematic bias in estimated fragment sizes. We show here that, by normalizing results to known typing controls, one can obtain locus-averaged accuracies of < 0.06 bp and normalized results within 1 bp of actual. We detect as little as a 1:30,000 dilution of a DNA quantitation standard stained with highly sensitive intercalating dyes, indicating an 80-zeptomole sensitivity limit. However, to obtain reproducible electrokinetic injection, approximately 200 attomoles of fluorescein-labeled DNA is required. These sensitivity limits, sizing precision, and accuracy, together with the 1-hr run times for 48-96 samples, indicate that CAE is a viable method for high-throughput genetic analysis of simple sequence repeat polymorphisms.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验