Suppr超能文献

人肝微粒体体外对咪达唑仑的羟基化作用:氟西汀、去甲氟西汀及唑类抗真菌剂的抑制作用

Midazolam hydroxylation by human liver microsomes in vitro: inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents.

作者信息

von Moltke L L, Greenblatt D J, Schmider J, Duan S X, Wright C E, Harmatz J S, Shader R I

机构信息

Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA.

出版信息

J Clin Pharmacol. 1996 Sep;36(9):783-91. doi: 10.1002/j.1552-4604.1996.tb04251.x.

Abstract

Biotransformation of the imidazobenzodiazepine midazolam to its alpha-hydroxy and 4-hydroxy metabolites was studied in vitro using human liver microsomal preparations. Formation of alpha-hydroxy-midazolam was a high-affinity (Km = 3.3 mumol/L) Michaelis-Menten process coupled with substrate inhibition at high concentrations of midazolam. Formation of 4-hydroxy-midazolam had much lower apparent affinity (57 mumol/L), with minimal evidence of substrate inhibition. Based on comparison of Vmax/Km ratios for the two pathways, alpha-hydroxy-midazolam formation was estimated to account for 95% of net intrinsic clearance. Three azole antifungal agents were inhibitors of midazolam metabolism in vitro, with inhibition being largely consistent with a competitive mechanism. Mean competitive inhibition constants (Ki) versus alpha-hydroxy-midazolam formation were 0.0037 mumol/L for ketoconazole, 0.27 mumol/L for itraconazole, and 1.27 mumol/L for fluconazole. An in vitro-in vivo scaling model predicted inhibition of oral midazolam clearance due to coadministration of ketoconazole or itraconazole; the predicted inhibition was consistent with observed interactions in clinical pharmacokinetic studies. The selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine and its principal metabolite, norfluoxetine, also were inhibitors of both pathways of midazolam biotransformation, with norfluoxetine being a much more potent inhibitor than was fluoxetine itself. This finding is consistent with results of other in vitro studies and of clinical studies, indicating that fluoxetine, largely via its metabolite norfluoxetine, may impair clearance of P450-3A substrates.

摘要

使用人肝微粒体制剂在体外研究了咪唑并苯二氮䓬咪达唑仑向其α-羟基和4-羟基代谢物的生物转化。α-羟基咪达唑仑的形成是一个高亲和力(Km = 3.3 μmol/L)的米氏过程,在高浓度咪达唑仑时伴有底物抑制。4-羟基咪达唑仑的形成具有低得多的表观亲和力(57 μmol/L),几乎没有底物抑制的证据。基于两条途径的Vmax/Km比值比较,估计α-羟基咪达唑仑的形成占净内在清除率的95%。三种唑类抗真菌剂是体外咪达唑仑代谢的抑制剂,抑制作用在很大程度上符合竞争机制。与α-羟基咪达唑仑形成相关的平均竞争抑制常数(Ki),酮康唑为0.0037 μmol/L,伊曲康唑为0.27 μmol/L,氟康唑为1.27 μmol/L。一个体外-体内比例模型预测了酮康唑或伊曲康唑合用对口服咪达唑仑清除率的抑制作用;预测的抑制作用与临床药代动力学研究中观察到的相互作用一致。选择性5-羟色胺再摄取抑制剂(SSRI)类抗抑郁药氟西汀及其主要代谢物去甲氟西汀也是咪达唑仑生物转化两条途径的抑制剂,去甲氟西汀的抑制作用比氟西汀本身更强。这一发现与其他体外研究和临床研究结果一致,表明氟西汀主要通过其代谢物去甲氟西汀可能损害P450-3A底物的清除。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验