Kuesel A C, Stoyanova R, Aiken N R, Li C W, Szwergold B S, Shaller C, Brown T R
Department of NMR and Medical Spectroscopy, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
NMR Biomed. 1996 May;9(3):93-104. doi: 10.1002/(SICI)1099-1492(199605)9:3<93::AID-NBM410>3.0.CO;2-D.
This paper examines the potential and limitations of peak area quantitation of biological NMR spectra using principal component analysis (PCA), including its requirement for prior knowledge. The principles of the method are presented without in-depth mathematical treatment. PCA is illustrated for simulated data, 31P NMR spectra obtained consecutively over 1-2.5 days from perfused Rat-2 cells metabolizing the choline analogue phosphoniumcholine (Chop) and in vivo proton-decoupled, NOE-enhanced, three-dimensional CSI localized 31P NMR spectra of the liver of healthy volunteers. The results show that PCA can be used to quantitate strongly overlapping peaks without prior knowledge of the peak shapes or positions and to reconstruct spectra with significantly reduced noise variance. Two major limitations of PCA are presented: (1) PCA cannot separate peaks whose intensities are well correlated; (2) PCA is sensitive to differences in chemical shift and line-width of peaks between spectra. The discussion focuses on what knowledge of the biological and spectroscopic features of the samples and the principles of PCA is necessary for peak area quantitation via PCA.
本文研究了使用主成分分析(PCA)对生物核磁共振谱峰面积进行定量分析的潜力和局限性,包括其对先验知识的要求。文中介绍了该方法的原理,但未进行深入的数学处理。通过模拟数据、从代谢胆碱类似物磷酰胆碱(Chop)的灌注大鼠-2细胞连续1 - 2.5天获得的31P核磁共振谱,以及健康志愿者肝脏的体内质子去耦、NOE增强、三维CSI定位31P核磁共振谱对PCA进行了说明。结果表明,PCA可用于在无需事先了解峰形或位置的情况下对高度重叠的峰进行定量分析,并能重建噪声方差显著降低的谱图。文中提出了PCA的两个主要局限性:(1)PCA无法分离强度相关性良好的峰;(2)PCA对不同谱图之间峰的化学位移和线宽差异敏感。讨论重点在于通过PCA进行峰面积定量分析时,样本的生物学和光谱特征知识以及PCA原理哪些是必要的。