Barnes E M
Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA.
Int Rev Neurobiol. 1996;39:53-76. doi: 10.1016/s0074-7742(08)60663-7.
Prolonged occupancy of GABAA receptors by ligands, including GABA and benzodiazepine agonists, sets in motion a series of mechanisms that can be termed use-dependent regulation. These mechanisms can be subdivided into two distinct pathways, one for GABAA receptor downregulation and another for upregulation. Treatment of cortical neurons with GABA or benzodiazepines in cultures opens the pathway for GABAA receptor downregulation, which includes (in putative temporal order): (1) desensitization (tachyphylaxis), (2) sequestration (endocytosis) of subunit polypeptides and uncoupling of allosteric interactions between GABA and benzodiazepine binding sites, (3) subunit polypeptide degradation, and (4) repression of subunit gene expression. The end-point of GABAA receptor downregulation, a reduction in receptor number, is postulated to be established initially by degradation of the receptor protein and then maintained by a diminished level of de novo synthesis. Benzodiazepine treatment of many preparations, including cells expressing recombinant GABAA receptors, may elicit only desensitization, sequestration, or uncoupling, without a decline in receptor number. Components of the GABAA receptor downregulation pathway are also evoked by chronic administration of GABAmimetics, benzodiazepines, barbiturates, and neurosteroids in animals. This downregulation correlates with the establishment of tolerance to and physical dependence on the pharmacological effects of these drugs, suggesting a cellular model for this behavior. The upregulation of GABAA receptors is observed as one of the neurotrophic actions of GABA, primarily in cultured cerebellar granule cells. Upregulation in culture is caused by enhanced expression of genes for GABAA receptor subunits and correlates with the establishment of GABAergic circuitry in the developing cerebellum. Thus, both the upregulation and downregulation of GABAA receptors appear to represent use-dependent pathways for guiding synaptic plasticity in the vertebrate central nervous system.
包括γ-氨基丁酸(GABA)和苯二氮䓬类激动剂在内的配体对GABAA受体的长期占据会启动一系列可称为使用依赖性调节的机制。这些机制可细分为两个不同的途径,一个用于GABAA受体下调,另一个用于上调。在培养物中用GABA或苯二氮䓬类药物处理皮质神经元会开启GABAA受体下调的途径,该途径包括(按假定的时间顺序):(1)脱敏(快速耐受性),(2)亚基多肽的隔离(内吞作用)以及GABA与苯二氮䓬结合位点之间变构相互作用的解偶联,(3)亚基多肽降解,以及(4)亚基基因表达的抑制。GABAA受体下调的终点,即受体数量的减少,据推测最初是由受体蛋白的降解建立的,然后通过从头合成水平的降低得以维持。对包括表达重组GABAA受体的细胞在内的许多制剂进行苯二氮䓬类药物处理,可能仅引起脱敏、隔离或解偶联,而受体数量不会减少。在动物中,长期施用GABA模拟物、苯二氮䓬类药物、巴比妥类药物和神经甾体也会引发GABAA受体下调途径的组成部分。这种下调与对这些药物药理作用的耐受性和身体依赖性的建立相关,提示了这种行为的细胞模型。GABAA受体的上调被视为GABA的神经营养作用之一,主要在培养的小脑颗粒细胞中观察到。培养中的上调是由GABAA受体亚基基因的表达增强引起的,并且与发育中小脑中GABA能神经回路的建立相关。因此,GABAA受体的上调和下调似乎都代表了脊椎动物中枢神经系统中指导突触可塑性的使用依赖性途径。