Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18595-600. doi: 10.1073/pnas.1204994109. Epub 2012 Oct 22.
Benzodiazepines potentiate γ-aminobutyric acid type A receptor (GABA(A)R) activity and are widely prescribed to treat anxiety, insomnia, and seizure disorders. Unfortunately, clinical use of benzodiazepines (BZs) is severely limited by tolerance. The mechanisms leading to BZ tolerance are unknown. BZs bind at the interface between an α and γ subunit of GABA(A)Rs, preferentially enhancing synaptic receptors largely composed of α(1-3, 5), β3, and γ2 subunits. Using confocal imaging and patch-clamp approaches, we show that treatment with the BZ flurazepam decreases GABA(A)R surface levels and the efficacy of neuronal inhibition in hippocampal neurons. A dramatic decrease in surface and total levels of α2 subunit-containing GABA(A)Rs occurred within 24 h of flurazepam treatment, whereas GABA(A)Rs incorporating α1 subunits showed little alteration. The GABA(A)R surface depletion could be reversed by treatment with the BZ antagonist Ro 15-1788. Coincident with decreased GABA(A)R surface levels, flurazepam treatment reduced miniature inhibitory postsynaptic current amplitude, which returned to control levels with acute Ro 15-1788 treatment. GABA(A)R endocytosis and insertion rates were unchanged by flurazepam treatment. Treatment with leupeptin restored flurazepam lowered receptor surface levels, strongly suggesting that flurazepam increases lysosomal degradation of GABA(A)Rs. Together, these data suggest that flurazepam exposure enhances degradation of α2 subunit-containing GABA(A)Rs after their removal from the plasma membrane, leading to a reduction in inhibitory synapse size and number along with a decrease in the efficacy of synaptic inhibition. These reported subtype-specific changes in GABA(A)R trafficking provide significant mechanistic insight into the initial neuroadaptive responses occurring with BZ treatment.
苯二氮䓬类药物增强γ-氨基丁酸 A 型受体(GABA(A)R)的活性,被广泛用于治疗焦虑、失眠和癫痫发作障碍。不幸的是,苯二氮䓬类药物(BZs)的临床应用受到严重限制,因为它们会产生耐受性。导致 BZ 耐受的机制尚不清楚。BZs 结合在 GABA(A)R 的 α 和 γ 亚基之间的界面上,优先增强主要由 α(1-3,5)、β3 和 γ2 亚基组成的突触受体。通过共聚焦成像和膜片钳技术,我们发现用 BZ 氟西泮处理会降低海马神经元中 GABA(A)R 的表面水平和神经元抑制的效率。在氟西泮处理后 24 小时内,α2 亚基包含的 GABA(A)R 的表面和总水平发生了明显下降,而包含 α1 亚基的 GABA(A)R 则几乎没有改变。BZ 拮抗剂 Ro 15-1788 处理可以逆转 GABA(A)R 的表面耗竭。与 GABA(A)R 表面水平降低同时发生的是,氟西泮处理降低了微小抑制性突触后电流幅度,而用急性 Ro 15-1788 处理后则恢复到对照水平。氟西泮处理对 GABA(A)R 内吞和插入率没有影响。用亮肽素处理可以恢复氟西泮降低的受体表面水平,这强烈表明氟西泮增加了 GABA(A)R 的溶酶体降解。综上所述,这些数据表明,氟西泮暴露后会增强从质膜上移除的α2 亚基包含的 GABA(A)R 的降解,导致抑制性突触大小和数量减少,以及突触抑制效率降低。这些报道的 GABA(A)R 转运的亚型特异性变化为 BZ 治疗时发生的初始神经适应性反应提供了重要的机制见解。