Manor D, Rothman D L, Mason G F, Hyder F, Petroff O A, Behar K L
Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
Neurochem Res. 1996 Sep;21(9):1031-41. doi: 10.1007/BF02532413.
Brain GABA levels rise and plateau following prolonged administration of the irreversible GABA-transaminase inhibitor vigabatrin (gamma-vinylGABA). Recently it has been shown that increased GABA levels reduces GAD67 protein, one of two major isoforms of glutamic acid decarboxylase (GAD). The effects of GABA elevation on GABA synthesis were assessed in vivo using 1H and 13C-edited NMR spectroscopy. Rates of turnover of cortical glutamate and GABA from intravenously administered [1-13C]glucose were measured in alpha-chloralose anesthetized rats 24 hours after receiving vigabatrin (500 mg/kg, i.p.) and in non-treated controls. GABA concentration was increased 2-fold at 24 hours (from 1.3 +/- 0.4 to 2.7 +/- 0.9 mumol/g) and GABA-T activity was inhibited by 60%. Tricarboxylic acid cycle flux was not affected by vigabatrin treatment compared to non-treated rats (0.47 +/- 0.19 versus 0.52 +/- 0.18 mumol/g, respectively). GABA-C2 fractional enrichment (FE) measured in acid extracts rose more slowly in vigabatrin-treated compared to non-treated rats, reaching > 90% of the glutamate FE after 3 hours. In contrast, GABA FE > or = glutamate FE in non-treated rats. A metabolic model consisting of a single glutamate pool failed to account for the rapid labeling of GABA from glutamate. Metabolic modelling analysis based on two (non-communicating) glutamate pools revealed a approximately 70% decrease in the rate of GABA synthesis following vigabatrin-treatment, from 0.14 (non-treated) to 0.04 mumol/g/min (vigabatrin-treated). These findings, in conjunction with the previously reported differential effects of elevated GABA on the GAD isoforms, suggests that GAD67 may account for a major fraction of cortical GABA synthesis in the alpha-chloralose anesthetized rat brain in vivo.
在长期给予不可逆的γ-氨基丁酸转氨酶抑制剂氨己烯酸(γ-乙烯基γ-氨基丁酸)后,脑内γ-氨基丁酸(GABA)水平会升高并趋于平稳。最近研究表明,升高的GABA水平会降低谷氨酸脱羧酶(GAD)两种主要同工型之一的GAD67蛋白水平。使用1H和13C编辑的核磁共振波谱在体内评估了GABA升高对GABA合成的影响。在接受氨己烯酸(500mg/kg,腹腔注射)24小时后的α-氯醛糖麻醉大鼠以及未处理的对照大鼠中,测量了静脉注射[1-13C]葡萄糖后皮质谷氨酸和GABA的周转率。24小时时GABA浓度增加了2倍(从1.3±0.4增至2.7±0.9μmol/g),GABA转氨酶(GABA-T)活性受到60%的抑制。与未处理的大鼠相比,氨己烯酸处理对三羧酸循环通量没有影响(分别为0.47±0.19与0.52±0.18μmol/g)。与未处理的大鼠相比,氨己烯酸处理的大鼠酸提取物中测量的GABA-C2分数富集(FE)上升得更慢,3小时后达到谷氨酸FE的>90%。相反,未处理的大鼠中GABA FE≥谷氨酸FE。由单个谷氨酸池组成的代谢模型无法解释GABA从谷氨酸的快速标记。基于两个(不连通的)谷氨酸池的代谢建模分析显示,氨己烯酸处理后GABA合成速率下降了约70%,从未处理时的0.14降至0.04μmol/g/min(氨己烯酸处理)。这些发现,结合先前报道的升高的GABA对GAD同工型的不同影响,表明在体内α-氯醛糖麻醉的大鼠脑中,GAD67可能占皮质GABA合成的主要部分。