Lee A A, Delhaas T, Waldman L K, MacKenna D A, Villarreal F J, McCulloch A D
Department of Bioengineering and Medicine, University of California at San Diego, USA.
Am J Physiol. 1996 Oct;271(4 Pt 1):C1400-8. doi: 10.1152/ajpcell.1996.271.4.C1400.
We developed a device that applies homogeneous equibiaxial strains of 0-10% to a cell culture substrate and quantitatively verified transmission of substrate deformation to cultured cardiac cells. Clamped elastic membranes in both single-well and multiwell versions of the device are uniformly stretched by indentation with a plastic ring, resulting in strain that is directly proportional to the pitch-to-radius ratio. Two-dimensional deformations were measured by tracking fluorescent microspheres attached to the substrate and to cultured adult rat cardiac fibroblasts. For nominal stretches up to 18%, strains along circumferential and radial axes were equal in magnitude and homogeneously distributed with negligible shear. For 5% stretch, circumferential and radial strains in the substrate were 0.046 +/- 0.005 and 0.048 +/- 0.004 [not significant (NS)], respectively, and shear strain was 0.001 +/- 0.003 (NS). Calibration of both single-well and multiwell versions permits strain selection by device rotation. The reproducible application and quantification of homogeneous equibiaxial strain in cultured cells provides a quantitative approach for correlating mechanical stimuli to cellular transduction mechanisms.