Suppr超能文献

Anionic residue in the alpha-subunit of the nicotinic acetylcholine receptor contributing to subunit assembly and ligand binding.

作者信息

Sugiyama N, Boyd A E, Taylor P

机构信息

Department of Pharmacology, University of California at San Diego, La Jolla, California 92093, USA.

出版信息

J Biol Chem. 1996 Oct 25;271(43):26575-81. doi: 10.1074/jbc.271.43.26575.

Abstract

To ascertain the anionic sites on the nicotinic receptor to which acetylcholine and other quaternary ammonium ligands bind, we have examined the role of an aspartyl residue (Asp-152) in the alpha-subunit. Prior photolytic labeling with agonist analogues of the neighboring residues Trp-149 and Tyr-151 suggests that their side chains reside on the binding face (also termed the (+)- or counterclockwise face) of the alpha-subunit. Asp-152 presents an anionic charge in the vicinity of these aromatic residues. Modification of the aspartate to asparagine (D152N) creates a glycosylation signal (Asn-152-Gly-Ser), and we find, on the basis of altered electrophoretic migration, that glycosylation occurs at this position upon cotransfection of the mutant alpha-subunit with beta-, gamma-, and delta-subunits. Glycosylation results in a reduction in the capacity of the receptor to assemble; this reduction is manifest in the initial step of dimer formation between the alphagamma- and alphadelta-subunits. The alpha-subunit mutant receptor reaching the assembled pentamer exhibits an altered selectivity for certain ligands. Little reduction in alpha-bungarotoxin binding is observed, whereas affinities for agonists and competitive alkaloid antagonists are reduced substantially. Separation of the contributions of charge removal and glycosylation addition shows that both factors affect agonist affinity, with the charge influence being far more predominant. These findings raise the possibility that a component of the coulombic attraction stabilizing the binding of agonists comes from the aspartyl residue at position 152 in the alpha-subunit.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验