Suppr超能文献

Quantitative characterization of adsorption isotherms using isothermal microcalorimetry.

作者信息

Pudipeddi M, Sokoloski T D, Duddu S P, Carstensen J T

机构信息

School of Pharmacy, University of Wisconsin, Madison 53706, USA.

出版信息

J Pharm Sci. 1996 Apr;85(4):381-6. doi: 10.1021/js950355u.

Abstract

The integral heat of adsorption of water vapor on sodium benzoate samples was determined at various partial vapor pressures using a heat conduction microcalorimeter. An equation is presented to describe the calorimetric integral heat response (mJ/g of solid) as a function of relative humidity. This equation, although similar in principle to the well-known BET equation, relates the heat evolved (rather than volume or mass of gas adsorbed) upon adsorption to the partial pressure of the gas. It qualitatively describes the shape of the calorimetric isotherm and quantitatively allows the calculation of "monolayer capacity" or the apparent surface area with water as the adsorbate. The modified BET equation was applied to the calorimetric adsorption data available in the literature. The surface area or the monolayer coverage values of the solid samples used in these studies were calculated from data-fitted parameter estimates. Good agreement was found between Vm or surface area values obtained by the application of the model to the calorimetric data and those reported by the authors using conventional gravimetric or volumetric measurement of adsorption. The model satisfactorily described the experimental calorimetric data of water vapor adsorption on sodium benzoate. The model equation and the use of isothermal microcalorimetry provide a means to obtain the water adsorption surface area of solid materials. The method may also be useful in comparing the surface properties of drugs and excipients obtained by different methods or from different sources. The microcalorimetric method to characterize adsorption is more sensitive and convenient in comparison with some of the conventional techniques.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验