Suppr超能文献

Effects of the structure of a toxicokinetic model of butadiene inhalation exposure on computed production of carcinogenic intermediates.

作者信息

Kohn M C, Melnick R L

机构信息

Laboratory of Quantitative and Computational Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709-2233, USA.

出版信息

Toxicology. 1996 Oct 28;113(1-3):31-9. doi: 10.1016/0300-483x(96)03424-5.

Abstract

A flow-limited physiologically based toxicokinetic model was constructed for uptake, metabolism, and clearance of butadiene (BD) and its principal metabolite 1,2-epoxy-3-butene (EB), using physiological and biochemical parameters from the literature where available. The model includes compartments for blood, liver, lung, fat, GI tract, other rapidly perfused tissues, and slowly perfused tissues. The blood was distributed among compartments for arterial plus venous blood and subcompartments for vascular spaces associated with each of the tissue compartments. The lung contained a subcompartment for the alveolar space. Metabolic activation of BD by cytochrome P450-catalyzed epoxidation was modeled as occurring in liver, lung, and the rapidly perfused tissue compartments. The detoxication of EB catalyzed by epoxide hydrolase and glutathione S-transferase (GST) was modeled as occurring in liver, lung, and the rapidly perfused tissues compartments and by blood GST activity. The model also includes depletion of glutathione (GSH) by GST-catalyzed conjugation of EB and 3-butene-1,2-diol and resynthesis of GSH from cysteine. Values of biochemical parameters that were unavailable in the literature were estimated by iteratively reweighted least squares optimization to reproduce data for uptake of BD and EB by rats and mice in closed chambers. The resulting model also reproduced the depletion of GSH in liver and lung in flow-through systems. It reproduced the concentrations of expired EB produced from BD in closed chambers but overpredicted separately measured blood EB concentrations in flow-through systems, indicating an inconsistency between these two experiments that cannot be resolved by this model or an inadequacy in the model. Equilibration of chamber gases with the alveolar space and alveolar gas with lung capillary blood results in much less dilution of the inhaled gas in the blood compared with the predictions of models in which chamber gas equilibrates directly with the total circulation. The production of EB predicted by the present model was found to be sensitive to a number of physiological and biochemical parameters. A valid and useful toxicokinetic model must have reliable physiological and enzymological data for BD biotransformation before it can be credibly used for human risk assessment.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验